论具有多条分离线的片断光滑广义阿贝尔方程中的极限循环数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Renhao Tian, Yulin Zhao
{"title":"论具有多条分离线的片断光滑广义阿贝尔方程中的极限循环数","authors":"Renhao Tian,&nbsp;Yulin Zhao","doi":"10.1016/j.nonrwa.2024.104151","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates generalized Abel equations of the form <span><math><mrow><mi>d</mi><mi>x</mi><mo>/</mo><mi>d</mi><mi>θ</mi><mo>=</mo><mi>A</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>B</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></math></span>, where <span><math><mi>p</mi></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>≠</mo><mi>q</mi></mrow></math></span>, and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> are piecewise trigonometrical polynomials of degree <span><math><mi>m</mi></math></span> with <span><math><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> separation lines <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>&lt;</mo><mn>2</mn><mi>π</mi></mrow></math></span>. The main objective is to obtain the maximum number of non-zero limit cycles (i.e., non-zero isolated periodic solutions) that the equation can have, denoted by <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>, and to analyze how the number and location of separation lines <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> affect <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. By using the theories of Melnikov functions and ECT-systems, we obtain lower bounds for <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. Our result extend those of Huang et al. who studied the special case of <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span>, and reveal that the lower bounds decrease in the presence of pairs of symmetrical separation lines.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the number of limit cycles in piecewise smooth generalized Abel equations with many separation lines\",\"authors\":\"Renhao Tian,&nbsp;Yulin Zhao\",\"doi\":\"10.1016/j.nonrwa.2024.104151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates generalized Abel equations of the form <span><math><mrow><mi>d</mi><mi>x</mi><mo>/</mo><mi>d</mi><mi>θ</mi><mo>=</mo><mi>A</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>B</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></math></span>, where <span><math><mi>p</mi></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>≠</mo><mi>q</mi></mrow></math></span>, and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> are piecewise trigonometrical polynomials of degree <span><math><mi>m</mi></math></span> with <span><math><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> separation lines <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>&lt;</mo><mn>2</mn><mi>π</mi></mrow></math></span>. The main objective is to obtain the maximum number of non-zero limit cycles (i.e., non-zero isolated periodic solutions) that the equation can have, denoted by <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>, and to analyze how the number and location of separation lines <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> affect <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. By using the theories of Melnikov functions and ECT-systems, we obtain lower bounds for <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. Our result extend those of Huang et al. who studied the special case of <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span>, and reveal that the lower bounds decrease in the presence of pairs of symmetrical separation lines.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000919\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000919","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究形式为 dx/dθ=A(θ)xp+B(θ)xq 的广义阿贝尔方程,其中 p,q∈Z≥2,p≠q,A(θ) 和 B(θ) 是具有 n-1∈N+ 分离线 0<θ1<θ2<⋯<θn-1<2π 的 m 阶片断三角多项式。主要目的是获得方程可能具有的最大非零极限循环数(即非零孤立周期解),用 Hθ1,θ2,...,θn-1(m) 表示,并分析分离线 {θi}i=1n-1 的数量和位置如何影响 Hθ1,θ2,...,θn-1(m)。利用梅尔尼科夫函数和 ECT 系统理论,我们得到了 Hθ1,θ2,...,θn-1(m) 的下界。我们的结果扩展了 Huang 等人研究 n=2 特殊情况的结果,并揭示了在存在成对对称分离线的情况下,下界会减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the number of limit cycles in piecewise smooth generalized Abel equations with many separation lines

This paper investigates generalized Abel equations of the form dx/dθ=A(θ)xp+B(θ)xq, where p, qZ2, pq, and A(θ) and B(θ) are piecewise trigonometrical polynomials of degree m with n1N+ separation lines 0<θ1<θ2<<θn1<2π. The main objective is to obtain the maximum number of non-zero limit cycles (i.e., non-zero isolated periodic solutions) that the equation can have, denoted by Hθ1,θ2,,θn1(m), and to analyze how the number and location of separation lines {θi}i=1n1 affect Hθ1,θ2,,θn1(m). By using the theories of Melnikov functions and ECT-systems, we obtain lower bounds for Hθ1,θ2,,θn1(m). Our result extend those of Huang et al. who studied the special case of n=2, and reveal that the lower bounds decrease in the presence of pairs of symmetrical separation lines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信