{"title":"论具有多条分离线的片断光滑广义阿贝尔方程中的极限循环数","authors":"Renhao Tian, Yulin Zhao","doi":"10.1016/j.nonrwa.2024.104151","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates generalized Abel equations of the form <span><math><mrow><mi>d</mi><mi>x</mi><mo>/</mo><mi>d</mi><mi>θ</mi><mo>=</mo><mi>A</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>B</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></math></span>, where <span><math><mi>p</mi></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>≠</mo><mi>q</mi></mrow></math></span>, and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> are piecewise trigonometrical polynomials of degree <span><math><mi>m</mi></math></span> with <span><math><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> separation lines <span><math><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo><</mo><mn>2</mn><mi>π</mi></mrow></math></span>. The main objective is to obtain the maximum number of non-zero limit cycles (i.e., non-zero isolated periodic solutions) that the equation can have, denoted by <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>, and to analyze how the number and location of separation lines <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> affect <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. By using the theories of Melnikov functions and ECT-systems, we obtain lower bounds for <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. Our result extend those of Huang et al. who studied the special case of <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span>, and reveal that the lower bounds decrease in the presence of pairs of symmetrical separation lines.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the number of limit cycles in piecewise smooth generalized Abel equations with many separation lines\",\"authors\":\"Renhao Tian, Yulin Zhao\",\"doi\":\"10.1016/j.nonrwa.2024.104151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates generalized Abel equations of the form <span><math><mrow><mi>d</mi><mi>x</mi><mo>/</mo><mi>d</mi><mi>θ</mi><mo>=</mo><mi>A</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>B</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></math></span>, where <span><math><mi>p</mi></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>≠</mo><mi>q</mi></mrow></math></span>, and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> are piecewise trigonometrical polynomials of degree <span><math><mi>m</mi></math></span> with <span><math><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> separation lines <span><math><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo><</mo><mn>2</mn><mi>π</mi></mrow></math></span>. The main objective is to obtain the maximum number of non-zero limit cycles (i.e., non-zero isolated periodic solutions) that the equation can have, denoted by <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>, and to analyze how the number and location of separation lines <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> affect <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. By using the theories of Melnikov functions and ECT-systems, we obtain lower bounds for <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. Our result extend those of Huang et al. who studied the special case of <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span>, and reveal that the lower bounds decrease in the presence of pairs of symmetrical separation lines.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000919\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000919","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the number of limit cycles in piecewise smooth generalized Abel equations with many separation lines
This paper investigates generalized Abel equations of the form , where , , , and and are piecewise trigonometrical polynomials of degree with separation lines . The main objective is to obtain the maximum number of non-zero limit cycles (i.e., non-zero isolated periodic solutions) that the equation can have, denoted by , and to analyze how the number and location of separation lines affect . By using the theories of Melnikov functions and ECT-systems, we obtain lower bounds for . Our result extend those of Huang et al. who studied the special case of , and reveal that the lower bounds decrease in the presence of pairs of symmetrical separation lines.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.