{"title":"人造蜂巢是天然蜜蜂巢穴(Apis mellifera)的有效热替代物吗?","authors":"Derek Morville Mitchell","doi":"10.1016/j.jtherbio.2024.103882","DOIUrl":null,"url":null,"abstract":"<div><p>Honey bees preferentially occupy thick walled tall narrow tree cavities and attach their combs directly to the nest wall, leaving periodic gaps. However, academic research and beekeeping are conducted in squat, thin walled man made hives, with a continuous gap between the combs and the walls and roof. Utilising a computational fluid dynamics (CFD) model of thermoregulating bees in complete nests in trees and thin walled man made hives, with the average size of tree comb gaps determined from honey bee occupied synthetic tree nests, this research compared the metabolic energy impacts of comb gaps and vertical movement of the thermoregulated brood area. This shows their heat transfer regimes are disparate, including: bee space above combs increases heat loss by up to ∼70%; hives, compared to tree nests, require at least 150% the density of honey bees to arrest convection across the brood area. Tree cavities have a larger vertical freedom, a greater thermal resistance and can make dense clustering redundant. With the thermal environment being critical to honey bees, the magnitude and scope of these differences suggest that some hive based behavioural research needs extra validation to be considered non-anthropogenic, and some bee keeping practices are sub-optimal.</p></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"122 ","pages":"Article 103882"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0306456524001001/pdfft?md5=f4158b81236bd214841b71a8bee6a6c7&pid=1-s2.0-S0306456524001001-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Are man-made hives valid thermal surrogates for natural honey bee nests (Apis mellifera)?\",\"authors\":\"Derek Morville Mitchell\",\"doi\":\"10.1016/j.jtherbio.2024.103882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Honey bees preferentially occupy thick walled tall narrow tree cavities and attach their combs directly to the nest wall, leaving periodic gaps. However, academic research and beekeeping are conducted in squat, thin walled man made hives, with a continuous gap between the combs and the walls and roof. Utilising a computational fluid dynamics (CFD) model of thermoregulating bees in complete nests in trees and thin walled man made hives, with the average size of tree comb gaps determined from honey bee occupied synthetic tree nests, this research compared the metabolic energy impacts of comb gaps and vertical movement of the thermoregulated brood area. This shows their heat transfer regimes are disparate, including: bee space above combs increases heat loss by up to ∼70%; hives, compared to tree nests, require at least 150% the density of honey bees to arrest convection across the brood area. Tree cavities have a larger vertical freedom, a greater thermal resistance and can make dense clustering redundant. With the thermal environment being critical to honey bees, the magnitude and scope of these differences suggest that some hive based behavioural research needs extra validation to be considered non-anthropogenic, and some bee keeping practices are sub-optimal.</p></div>\",\"PeriodicalId\":17428,\"journal\":{\"name\":\"Journal of thermal biology\",\"volume\":\"122 \",\"pages\":\"Article 103882\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001001/pdfft?md5=f4158b81236bd214841b71a8bee6a6c7&pid=1-s2.0-S0306456524001001-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thermal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Are man-made hives valid thermal surrogates for natural honey bee nests (Apis mellifera)?
Honey bees preferentially occupy thick walled tall narrow tree cavities and attach their combs directly to the nest wall, leaving periodic gaps. However, academic research and beekeeping are conducted in squat, thin walled man made hives, with a continuous gap between the combs and the walls and roof. Utilising a computational fluid dynamics (CFD) model of thermoregulating bees in complete nests in trees and thin walled man made hives, with the average size of tree comb gaps determined from honey bee occupied synthetic tree nests, this research compared the metabolic energy impacts of comb gaps and vertical movement of the thermoregulated brood area. This shows their heat transfer regimes are disparate, including: bee space above combs increases heat loss by up to ∼70%; hives, compared to tree nests, require at least 150% the density of honey bees to arrest convection across the brood area. Tree cavities have a larger vertical freedom, a greater thermal resistance and can make dense clustering redundant. With the thermal environment being critical to honey bees, the magnitude and scope of these differences suggest that some hive based behavioural research needs extra validation to be considered non-anthropogenic, and some bee keeping practices are sub-optimal.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles