半平面上具有垂直粘性和纳维边界的布森斯克方程的零粘性极限

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mengni Li , Yan-Lin Wang
{"title":"半平面上具有垂直粘性和纳维边界的布森斯克方程的零粘性极限","authors":"Mengni Li ,&nbsp;Yan-Lin Wang","doi":"10.1016/j.nonrwa.2024.104150","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the zero-viscosity limit of 2-D Boussinesq equations with vertical viscosity and zero diffusivity, which is a nonlinear system with partial dissipation arising in atmospheric sciences and oceanic circulation. The domain is taken as <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> with Navier-type boundary. We prove the nonlinear stability of the approximate solution constructed by boundary layer expansion in conormal Sobolev space. The expansion order and convergence rates for the inviscid limit are also identified in this paper. Our paper extends a partial zero-dissipation limit result of Boussinesq system with full dissipation by Chae D. (2006) in the whole space to the case with partial dissipation and Navier boundary in the half plane.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-viscosity limit for Boussinesq equations with vertical viscosity and Navier boundary in the half plane\",\"authors\":\"Mengni Li ,&nbsp;Yan-Lin Wang\",\"doi\":\"10.1016/j.nonrwa.2024.104150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the zero-viscosity limit of 2-D Boussinesq equations with vertical viscosity and zero diffusivity, which is a nonlinear system with partial dissipation arising in atmospheric sciences and oceanic circulation. The domain is taken as <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> with Navier-type boundary. We prove the nonlinear stability of the approximate solution constructed by boundary layer expansion in conormal Sobolev space. The expansion order and convergence rates for the inviscid limit are also identified in this paper. Our paper extends a partial zero-dissipation limit result of Boussinesq system with full dissipation by Chae D. (2006) in the whole space to the case with partial dissipation and Navier boundary in the half plane.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000907\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000907","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有垂直粘性和零扩散性的二维布森斯克方程的零粘性极限,这是一个在大气科学和海洋环流中出现的具有部分耗散的非线性系统。域取 R+2,边界为 Navier 型。我们证明了通过边界层扩展在常模 Sobolev 空间构建的近似解的非线性稳定性。本文还确定了不粘性极限的扩展阶数和收敛速率。本文将 Chae D. (2006) 提出的全耗散 Boussinesq 系统的部分零耗散极限结果在整个空间的应用扩展到了部分耗散和半平面 Navier 边界的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-viscosity limit for Boussinesq equations with vertical viscosity and Navier boundary in the half plane

In this paper we study the zero-viscosity limit of 2-D Boussinesq equations with vertical viscosity and zero diffusivity, which is a nonlinear system with partial dissipation arising in atmospheric sciences and oceanic circulation. The domain is taken as R+2 with Navier-type boundary. We prove the nonlinear stability of the approximate solution constructed by boundary layer expansion in conormal Sobolev space. The expansion order and convergence rates for the inviscid limit are also identified in this paper. Our paper extends a partial zero-dissipation limit result of Boussinesq system with full dissipation by Chae D. (2006) in the whole space to the case with partial dissipation and Navier boundary in the half plane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信