基于复值柔性神经树和负样本选择算法的糖尿病-化合物关系识别。

Xiaochao Sun, Bin Yang
{"title":"基于复值柔性神经树和负样本选择算法的糖尿病-化合物关系识别。","authors":"Xiaochao Sun, Bin Yang","doi":"10.2174/0115734099311445240529062318","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Virtual screening (VS) could select possible effective candidates from a large number of organic compounds, which plays an important role in network pharmacology. Virtual screening is a very important step in network pharmacology.</p><p><strong>Objective: </strong>The accuracy of screening compounds directly determines the subsequent network construction, target determination and pathway analysis. In order to improve the accuracy of screening the important compounds in herbs for treating diabetes, a novel methodology based on complex-valued flexible neural tree (CVFNT) model and negative sample selection algorithm is presented.</p><p><strong>Methods: </strong>In our method, diabetes-related targets were obtained by literature search. According to diabetes-related targets, active compounds were searched from the public database. The negative sample selection algorithm based on Tanimoto index was proposed to establish inactive compound set. The CVFNT model optimized was utilized to screen effective candidate compounds.</p><p><strong>Result: </strong>Our proposed method performs better than eight classical classifiers in terms of TPR, FPR, Precision, Specificity, F1, AUC and ROC curve. Our method could also predict 18 compounds from Liangxue Sanyu Decoction, which are involved in the treatment of diabetes.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diabetes-compound Relationship Identification based on Complex-valued Flexible Neural Tree and Negative Sample Selection Algorithm.\",\"authors\":\"Xiaochao Sun, Bin Yang\",\"doi\":\"10.2174/0115734099311445240529062318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Virtual screening (VS) could select possible effective candidates from a large number of organic compounds, which plays an important role in network pharmacology. Virtual screening is a very important step in network pharmacology.</p><p><strong>Objective: </strong>The accuracy of screening compounds directly determines the subsequent network construction, target determination and pathway analysis. In order to improve the accuracy of screening the important compounds in herbs for treating diabetes, a novel methodology based on complex-valued flexible neural tree (CVFNT) model and negative sample selection algorithm is presented.</p><p><strong>Methods: </strong>In our method, diabetes-related targets were obtained by literature search. According to diabetes-related targets, active compounds were searched from the public database. The negative sample selection algorithm based on Tanimoto index was proposed to establish inactive compound set. The CVFNT model optimized was utilized to screen effective candidate compounds.</p><p><strong>Result: </strong>Our proposed method performs better than eight classical classifiers in terms of TPR, FPR, Precision, Specificity, F1, AUC and ROC curve. Our method could also predict 18 compounds from Liangxue Sanyu Decoction, which are involved in the treatment of diabetes.</p>\",\"PeriodicalId\":93961,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734099311445240529062318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099311445240529062318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:虚拟筛选(VS)可以从大量有机化合物中筛选出可能有效的候选化合物,在网络药理学中发挥着重要作用。虚拟筛选是网络药理学中非常重要的一步:筛选化合物的准确性直接决定了后续的网络构建、靶点确定和通路分析。为了提高筛选治疗糖尿病的重要中草药化合物的准确性,本文提出了一种基于复值柔性神经树(CVFNT)模型和负样本选择算法的新方法:我们的方法是通过文献检索获得与糖尿病相关的靶点。根据糖尿病相关靶点,从公共数据库中搜索活性化合物。提出了基于谷本指数的负样本选择算法,以建立非活性化合物集。利用优化的 CVFNT 模型筛选有效的候选化合物:结果:我们提出的方法在TPR、FPR、精确度、特异性、F1、AUC和ROC曲线方面都优于8种经典分类器。我们的方法还能预测梁雪三味汤中的 18 种参与治疗糖尿病的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diabetes-compound Relationship Identification based on Complex-valued Flexible Neural Tree and Negative Sample Selection Algorithm.

Background: Virtual screening (VS) could select possible effective candidates from a large number of organic compounds, which plays an important role in network pharmacology. Virtual screening is a very important step in network pharmacology.

Objective: The accuracy of screening compounds directly determines the subsequent network construction, target determination and pathway analysis. In order to improve the accuracy of screening the important compounds in herbs for treating diabetes, a novel methodology based on complex-valued flexible neural tree (CVFNT) model and negative sample selection algorithm is presented.

Methods: In our method, diabetes-related targets were obtained by literature search. According to diabetes-related targets, active compounds were searched from the public database. The negative sample selection algorithm based on Tanimoto index was proposed to establish inactive compound set. The CVFNT model optimized was utilized to screen effective candidate compounds.

Result: Our proposed method performs better than eight classical classifiers in terms of TPR, FPR, Precision, Specificity, F1, AUC and ROC curve. Our method could also predict 18 compounds from Liangxue Sanyu Decoction, which are involved in the treatment of diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信