Aoxiang Wang, Jinxi Zhou, Yiwen Hong, Yamei Cui, Yishen Wang, Jianying Pan, Yue Wu, Yan Luo
{"title":"视网膜血管变性小鼠视网膜血管变性的特征和血管相关克劳丁蛋白的表达","authors":"Aoxiang Wang, Jinxi Zhou, Yiwen Hong, Yamei Cui, Yishen Wang, Jianying Pan, Yue Wu, Yan Luo","doi":"10.1159/000539605","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to investigate the characteristics of retinal vascular degeneration and the expression of vessel-related claudin (CLD) proteins in retinal degeneration mouse (Pde6βrd1/rd1 rd1 mouse).</p><p><strong>Methods: </strong>Retinas from wild-type (WT) mice and rd1 mice at postnatal day 3 (P3), P5, P8, P11, P13, P15, P18, and P21 were collected. Immunofluorescence staining was used to assess the retinal vascular plexus, cell proliferation, CLD expression, and retinal ganglion cells (RGCs). The distribution of retinal superficial and deep vessels was determined by isolectin B4 fluorescence staining of retinal flat mounts and frozen sections. Hematoxylin and eosin staining and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling were used to investigate retinal histological degeneration and apoptosis in rd1 mice, respectively. Quantitative real-time PCR and Western blot were used to measure the expression of vessel-related CLD-1, -2, -3, and -5, vascular endothelial growth factor A (VEGFA), and vascular endothelial growth factor receptor 2 (VEGFR2) in the retinas.</p><p><strong>Results: </strong>Compared to the WT mice, the rd1 mice displayed delayed but completed progressive development in the retinal superficial vascular plexuses (SVPs) and deep vascular plexuses (DVPs). In the rd1 mice, the thickness of retinal layers gradually decreased and the retinas underwent progressive atrophy and degeneration. The deterioration got worse at the late developmental stage. The declined vessel density of SVP and DVP correlated with the decreased thickness of the full and inner parts of the retina and the reduced number of RGCs. DVP degeneration and the thinning of the outer nuclear layer exhibited an obvious reduction at P15. The expression levels of CLD-1, CLD-2, CLD-3, CLD-5, VEGFA, and VEGFR2 decreased and were consistently lower in the rd1 mice than in WT mice since P15.</p><p><strong>Conclusion: </strong>Rd1 mice exhibited progressive vascular degeneration of retinal SVP and DVP, the thinning and atrophy of retinal ONL and RGC, and the downregulation of vessel-related CLD proteins during the late developmental period. Thus, the rd1 mouse is a useful model of not only retinal neuro-degeneration but also retinal vascular degeneration.</p>","PeriodicalId":19662,"journal":{"name":"Ophthalmic Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of Retinal Vascular Degeneration and the Expression of Vessel-Related Claudin Proteins in Retinal Degeneration Mouse.\",\"authors\":\"Aoxiang Wang, Jinxi Zhou, Yiwen Hong, Yamei Cui, Yishen Wang, Jianying Pan, Yue Wu, Yan Luo\",\"doi\":\"10.1159/000539605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>This study aimed to investigate the characteristics of retinal vascular degeneration and the expression of vessel-related claudin (CLD) proteins in retinal degeneration mouse (Pde6βrd1/rd1 rd1 mouse).</p><p><strong>Methods: </strong>Retinas from wild-type (WT) mice and rd1 mice at postnatal day 3 (P3), P5, P8, P11, P13, P15, P18, and P21 were collected. Immunofluorescence staining was used to assess the retinal vascular plexus, cell proliferation, CLD expression, and retinal ganglion cells (RGCs). The distribution of retinal superficial and deep vessels was determined by isolectin B4 fluorescence staining of retinal flat mounts and frozen sections. Hematoxylin and eosin staining and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling were used to investigate retinal histological degeneration and apoptosis in rd1 mice, respectively. Quantitative real-time PCR and Western blot were used to measure the expression of vessel-related CLD-1, -2, -3, and -5, vascular endothelial growth factor A (VEGFA), and vascular endothelial growth factor receptor 2 (VEGFR2) in the retinas.</p><p><strong>Results: </strong>Compared to the WT mice, the rd1 mice displayed delayed but completed progressive development in the retinal superficial vascular plexuses (SVPs) and deep vascular plexuses (DVPs). In the rd1 mice, the thickness of retinal layers gradually decreased and the retinas underwent progressive atrophy and degeneration. The deterioration got worse at the late developmental stage. The declined vessel density of SVP and DVP correlated with the decreased thickness of the full and inner parts of the retina and the reduced number of RGCs. DVP degeneration and the thinning of the outer nuclear layer exhibited an obvious reduction at P15. The expression levels of CLD-1, CLD-2, CLD-3, CLD-5, VEGFA, and VEGFR2 decreased and were consistently lower in the rd1 mice than in WT mice since P15.</p><p><strong>Conclusion: </strong>Rd1 mice exhibited progressive vascular degeneration of retinal SVP and DVP, the thinning and atrophy of retinal ONL and RGC, and the downregulation of vessel-related CLD proteins during the late developmental period. Thus, the rd1 mouse is a useful model of not only retinal neuro-degeneration but also retinal vascular degeneration.</p>\",\"PeriodicalId\":19662,\"journal\":{\"name\":\"Ophthalmic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmic Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000539605\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539605","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Characteristics of Retinal Vascular Degeneration and the Expression of Vessel-Related Claudin Proteins in Retinal Degeneration Mouse.
Introduction: This study aimed to investigate the characteristics of retinal vascular degeneration and the expression of vessel-related claudin (CLD) proteins in retinal degeneration mouse (Pde6βrd1/rd1 rd1 mouse).
Methods: Retinas from wild-type (WT) mice and rd1 mice at postnatal day 3 (P3), P5, P8, P11, P13, P15, P18, and P21 were collected. Immunofluorescence staining was used to assess the retinal vascular plexus, cell proliferation, CLD expression, and retinal ganglion cells (RGCs). The distribution of retinal superficial and deep vessels was determined by isolectin B4 fluorescence staining of retinal flat mounts and frozen sections. Hematoxylin and eosin staining and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling were used to investigate retinal histological degeneration and apoptosis in rd1 mice, respectively. Quantitative real-time PCR and Western blot were used to measure the expression of vessel-related CLD-1, -2, -3, and -5, vascular endothelial growth factor A (VEGFA), and vascular endothelial growth factor receptor 2 (VEGFR2) in the retinas.
Results: Compared to the WT mice, the rd1 mice displayed delayed but completed progressive development in the retinal superficial vascular plexuses (SVPs) and deep vascular plexuses (DVPs). In the rd1 mice, the thickness of retinal layers gradually decreased and the retinas underwent progressive atrophy and degeneration. The deterioration got worse at the late developmental stage. The declined vessel density of SVP and DVP correlated with the decreased thickness of the full and inner parts of the retina and the reduced number of RGCs. DVP degeneration and the thinning of the outer nuclear layer exhibited an obvious reduction at P15. The expression levels of CLD-1, CLD-2, CLD-3, CLD-5, VEGFA, and VEGFR2 decreased and were consistently lower in the rd1 mice than in WT mice since P15.
Conclusion: Rd1 mice exhibited progressive vascular degeneration of retinal SVP and DVP, the thinning and atrophy of retinal ONL and RGC, and the downregulation of vessel-related CLD proteins during the late developmental period. Thus, the rd1 mouse is a useful model of not only retinal neuro-degeneration but also retinal vascular degeneration.
期刊介绍:
''Ophthalmic Research'' features original papers and reviews reporting on translational and clinical studies. Authors from throughout the world cover research topics on every field in connection with physical, physiologic, pharmacological, biochemical and molecular biological aspects of ophthalmology. This journal also aims to provide a record of international clinical research for both researchers and clinicians in ophthalmology. Finally, the transfer of information from fundamental research to clinical research and clinical practice is particularly welcome.