{"title":"B7-H3 和 ICAM-1 是甲状腺癌的潜在治疗靶点。","authors":"Pengtao Song, Yongcan Xu, Guochao Ye","doi":"10.1186/s13000-024-01504-2","DOIUrl":null,"url":null,"abstract":"<p><p>Although most differentiated thyroid carcinoma has a clinically favorable prognosis, some of specific types of thyroid cancer (such as anaplastic thyroid carcinoma and advanced papillary thyroid carcinoma) show fatal outcomes and require novel treatments. Immunotherapy is a promising avenue for the treatment of advanced thyroid carcinoma. B7-H3 (B7 homolog 3 protein) and ICAM-1 (intercellular adhesion molecule 1), as two important immune checkpoints (ICPs), is becoming hopeful target spots for immunotherapy. A growing amount of evidence has suggested that B7-H3 and ICAM-1 are upregulated in papillary thyroid carcinoma. However, their expression level in specific types of thyroid cancer remains largely unclear. In the present study, we explored the expression level of B7-H3 and ICAM-1 in different types of thyroid carcinoma. In the groups of the TCGA cohort, both B7-H3 and ICAM-1 mRNA were highly expressed in thyroid carcinoma. Furthermore, the patients with Stage2, 61-80y, Follicular thyroid papillary carcinoma and N0 had lower B7-H3 and ICAM-1 mRNA expression. In the groups of our cohort, PTCs and ATCs showed frequently moderate to strong expression of B7-H3 and ICAM-1 protein expression. The significant relevance of B7-H3 staining score with ICAM-1 staining score was observed in TCGA database and our cohort, which might open avenues for the combination therapy in advanced thyroid cancer.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163747/pdf/","citationCount":"0","resultStr":"{\"title\":\"B7-H3 and ICAM-1 are potentially therapeutic targets for thyroid carcinoma.\",\"authors\":\"Pengtao Song, Yongcan Xu, Guochao Ye\",\"doi\":\"10.1186/s13000-024-01504-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although most differentiated thyroid carcinoma has a clinically favorable prognosis, some of specific types of thyroid cancer (such as anaplastic thyroid carcinoma and advanced papillary thyroid carcinoma) show fatal outcomes and require novel treatments. Immunotherapy is a promising avenue for the treatment of advanced thyroid carcinoma. B7-H3 (B7 homolog 3 protein) and ICAM-1 (intercellular adhesion molecule 1), as two important immune checkpoints (ICPs), is becoming hopeful target spots for immunotherapy. A growing amount of evidence has suggested that B7-H3 and ICAM-1 are upregulated in papillary thyroid carcinoma. However, their expression level in specific types of thyroid cancer remains largely unclear. In the present study, we explored the expression level of B7-H3 and ICAM-1 in different types of thyroid carcinoma. In the groups of the TCGA cohort, both B7-H3 and ICAM-1 mRNA were highly expressed in thyroid carcinoma. Furthermore, the patients with Stage2, 61-80y, Follicular thyroid papillary carcinoma and N0 had lower B7-H3 and ICAM-1 mRNA expression. In the groups of our cohort, PTCs and ATCs showed frequently moderate to strong expression of B7-H3 and ICAM-1 protein expression. The significant relevance of B7-H3 staining score with ICAM-1 staining score was observed in TCGA database and our cohort, which might open avenues for the combination therapy in advanced thyroid cancer.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163747/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13000-024-01504-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13000-024-01504-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
B7-H3 and ICAM-1 are potentially therapeutic targets for thyroid carcinoma.
Although most differentiated thyroid carcinoma has a clinically favorable prognosis, some of specific types of thyroid cancer (such as anaplastic thyroid carcinoma and advanced papillary thyroid carcinoma) show fatal outcomes and require novel treatments. Immunotherapy is a promising avenue for the treatment of advanced thyroid carcinoma. B7-H3 (B7 homolog 3 protein) and ICAM-1 (intercellular adhesion molecule 1), as two important immune checkpoints (ICPs), is becoming hopeful target spots for immunotherapy. A growing amount of evidence has suggested that B7-H3 and ICAM-1 are upregulated in papillary thyroid carcinoma. However, their expression level in specific types of thyroid cancer remains largely unclear. In the present study, we explored the expression level of B7-H3 and ICAM-1 in different types of thyroid carcinoma. In the groups of the TCGA cohort, both B7-H3 and ICAM-1 mRNA were highly expressed in thyroid carcinoma. Furthermore, the patients with Stage2, 61-80y, Follicular thyroid papillary carcinoma and N0 had lower B7-H3 and ICAM-1 mRNA expression. In the groups of our cohort, PTCs and ATCs showed frequently moderate to strong expression of B7-H3 and ICAM-1 protein expression. The significant relevance of B7-H3 staining score with ICAM-1 staining score was observed in TCGA database and our cohort, which might open avenues for the combination therapy in advanced thyroid cancer.