Shreya Lakhera, Elizabeth Herbert, Julijana Gjorgjieva
{"title":"模拟发育过程中电路组织和功能的出现","authors":"Shreya Lakhera, Elizabeth Herbert, Julijana Gjorgjieva","doi":"10.1101/cshperspect.a041511","DOIUrl":null,"url":null,"abstract":"<p><p>Developing neural circuits show unique patterns of spontaneous activity and structured network connectivity shaped by diverse activity-dependent plasticity mechanisms. Based on extensive experimental work characterizing patterns of spontaneous activity in different brain regions over development, theoretical and computational models have played an important role in delineating the generation and function of individual features of spontaneous activity and their role in the plasticity-driven formation of circuit connectivity. Here, we review recent modeling efforts that explore how the developing cortex and hippocampus generate spontaneous activity, focusing on specific connectivity profiles and the gradual strengthening of inhibition as the key drivers behind the observed developmental changes in spontaneous activity. We then discuss computational models that mechanistically explore how different plasticity mechanisms use this spontaneous activity to instruct the formation and refinement of circuit connectivity, from the formation of single neuron receptive fields to sensory feature maps and recurrent architectures. We end by highlighting several open challenges regarding the functional implications of the discussed circuit changes, wherein models could provide the missing step linking immature developmental and mature adult information processing capabilities.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Emergence of Circuit Organization and Function during Development.\",\"authors\":\"Shreya Lakhera, Elizabeth Herbert, Julijana Gjorgjieva\",\"doi\":\"10.1101/cshperspect.a041511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing neural circuits show unique patterns of spontaneous activity and structured network connectivity shaped by diverse activity-dependent plasticity mechanisms. Based on extensive experimental work characterizing patterns of spontaneous activity in different brain regions over development, theoretical and computational models have played an important role in delineating the generation and function of individual features of spontaneous activity and their role in the plasticity-driven formation of circuit connectivity. Here, we review recent modeling efforts that explore how the developing cortex and hippocampus generate spontaneous activity, focusing on specific connectivity profiles and the gradual strengthening of inhibition as the key drivers behind the observed developmental changes in spontaneous activity. We then discuss computational models that mechanistically explore how different plasticity mechanisms use this spontaneous activity to instruct the formation and refinement of circuit connectivity, from the formation of single neuron receptive fields to sensory feature maps and recurrent architectures. We end by highlighting several open challenges regarding the functional implications of the discussed circuit changes, wherein models could provide the missing step linking immature developmental and mature adult information processing capabilities.</p>\",\"PeriodicalId\":10494,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041511\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041511","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Modeling the Emergence of Circuit Organization and Function during Development.
Developing neural circuits show unique patterns of spontaneous activity and structured network connectivity shaped by diverse activity-dependent plasticity mechanisms. Based on extensive experimental work characterizing patterns of spontaneous activity in different brain regions over development, theoretical and computational models have played an important role in delineating the generation and function of individual features of spontaneous activity and their role in the plasticity-driven formation of circuit connectivity. Here, we review recent modeling efforts that explore how the developing cortex and hippocampus generate spontaneous activity, focusing on specific connectivity profiles and the gradual strengthening of inhibition as the key drivers behind the observed developmental changes in spontaneous activity. We then discuss computational models that mechanistically explore how different plasticity mechanisms use this spontaneous activity to instruct the formation and refinement of circuit connectivity, from the formation of single neuron receptive fields to sensory feature maps and recurrent architectures. We end by highlighting several open challenges regarding the functional implications of the discussed circuit changes, wherein models could provide the missing step linking immature developmental and mature adult information processing capabilities.
期刊介绍:
Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.