人工智能学习蛋白质预测。

IF 6.9 2区 生物学 Q1 CELL BIOLOGY
Michael Heinzinger, Burkhard Rost
{"title":"人工智能学习蛋白质预测。","authors":"Michael Heinzinger, Burkhard Rost","doi":"10.1101/cshperspect.a041458","DOIUrl":null,"url":null,"abstract":"<p><p>From <i>AlphaGO</i> over <i>StableDiffusion</i> to <i>ChatGPT</i>, the recent decade of exponential advances in artificial intelligence (AI) has been altering life. In parallel, advances in computational biology are beginning to decode the language of life: <i>AlphaFold2</i> leaped forward in protein structure prediction, and protein language models (pLMs) replaced expertise and evolutionary information from multiple sequence alignments with information learned from reoccurring patterns in databases of billions of proteins without experimental annotations other than the amino acid sequences. None of those tools could have been developed 10 years ago; all will increase the wealth of experimental data and speed up the cycle from idea to proof. AI is affecting molecular and medical biology at giant steps, and the most important might be the leap toward more powerful protein design.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368192/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Learns Protein Prediction.\",\"authors\":\"Michael Heinzinger, Burkhard Rost\",\"doi\":\"10.1101/cshperspect.a041458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>From <i>AlphaGO</i> over <i>StableDiffusion</i> to <i>ChatGPT</i>, the recent decade of exponential advances in artificial intelligence (AI) has been altering life. In parallel, advances in computational biology are beginning to decode the language of life: <i>AlphaFold2</i> leaped forward in protein structure prediction, and protein language models (pLMs) replaced expertise and evolutionary information from multiple sequence alignments with information learned from reoccurring patterns in databases of billions of proteins without experimental annotations other than the amino acid sequences. None of those tools could have been developed 10 years ago; all will increase the wealth of experimental data and speed up the cycle from idea to proof. AI is affecting molecular and medical biology at giant steps, and the most important might be the leap toward more powerful protein design.</p>\",\"PeriodicalId\":10494,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041458\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041458","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从 AlphaGO 到 StableDiffusion,再到 ChatGPT,近十年来人工智能(AI)的指数级进步正在改变生活。与此同时,计算生物学的进步也开始解码生命的语言:AlphaFold2 在蛋白质结构预测方面突飞猛进,蛋白质语言模型(pLMs)取代了多序列比对中的专业知识和进化信息,取而代之的是从数十亿蛋白质数据库中除氨基酸序列外没有其他实验注释的重复出现模式中学习到的信息。这些工具都不可能在 10 年前开发出来;它们都将增加实验数据的财富,加快从想法到证明的周期。人工智能正在大步影响分子生物学和医学生物学,其中最重要的可能是向更强大的蛋白质设计跃进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence Learns Protein Prediction.

From AlphaGO over StableDiffusion to ChatGPT, the recent decade of exponential advances in artificial intelligence (AI) has been altering life. In parallel, advances in computational biology are beginning to decode the language of life: AlphaFold2 leaped forward in protein structure prediction, and protein language models (pLMs) replaced expertise and evolutionary information from multiple sequence alignments with information learned from reoccurring patterns in databases of billions of proteins without experimental annotations other than the amino acid sequences. None of those tools could have been developed 10 years ago; all will increase the wealth of experimental data and speed up the cycle from idea to proof. AI is affecting molecular and medical biology at giant steps, and the most important might be the leap toward more powerful protein design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信