Xiaoyan Yang, Liushan Wei, Shijie Wu, Zhizhong Xie, Xiaoyong Lei
{"title":"各种癌症中 ANRIL 与 MiRNA 之间的潜在联系","authors":"Xiaoyan Yang, Liushan Wei, Shijie Wu, Zhizhong Xie, Xiaoyong Lei","doi":"10.2174/0113862073294838240523035706","DOIUrl":null,"url":null,"abstract":"<p><p>Non-coding RNAs are mainly divided into two categories, one is small non-coding RNA represented by miRNA, and the other is long non-coding RNA longer than 200 bp. Further studies on non-coding RNAs have revealed that long non-coding RNAs not only have carcinogenic effects, but also have potential links with miRNAs. Antisense non-coding RNA in the INK4 locus (ANRIL/CDKN2B-AS1), one of the five subtypes of long non-coding RNA, has been proved to play a role of oncogene in many cancers, such as gastric cancer, cervical cancer, prostate cancer and non-small cell lung cancer. Knockdown ANRIL can significantly inhibit the proliferation and migration of cancer cells, while also negatively regulating the expression of related miRNAs. This suggests that ANRIL may serve as a potential target for the development of drugs that provide new strategies to improve the effectiveness of cancer treatment. In our review, we summarize the current association between ANRIL and miRNAs in various cancers.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential Links between ANRIL and MiRNAs in Various Cancers.\",\"authors\":\"Xiaoyan Yang, Liushan Wei, Shijie Wu, Zhizhong Xie, Xiaoyong Lei\",\"doi\":\"10.2174/0113862073294838240523035706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-coding RNAs are mainly divided into two categories, one is small non-coding RNA represented by miRNA, and the other is long non-coding RNA longer than 200 bp. Further studies on non-coding RNAs have revealed that long non-coding RNAs not only have carcinogenic effects, but also have potential links with miRNAs. Antisense non-coding RNA in the INK4 locus (ANRIL/CDKN2B-AS1), one of the five subtypes of long non-coding RNA, has been proved to play a role of oncogene in many cancers, such as gastric cancer, cervical cancer, prostate cancer and non-small cell lung cancer. Knockdown ANRIL can significantly inhibit the proliferation and migration of cancer cells, while also negatively regulating the expression of related miRNAs. This suggests that ANRIL may serve as a potential target for the development of drugs that provide new strategies to improve the effectiveness of cancer treatment. In our review, we summarize the current association between ANRIL and miRNAs in various cancers.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073294838240523035706\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073294838240523035706","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Potential Links between ANRIL and MiRNAs in Various Cancers.
Non-coding RNAs are mainly divided into two categories, one is small non-coding RNA represented by miRNA, and the other is long non-coding RNA longer than 200 bp. Further studies on non-coding RNAs have revealed that long non-coding RNAs not only have carcinogenic effects, but also have potential links with miRNAs. Antisense non-coding RNA in the INK4 locus (ANRIL/CDKN2B-AS1), one of the five subtypes of long non-coding RNA, has been proved to play a role of oncogene in many cancers, such as gastric cancer, cervical cancer, prostate cancer and non-small cell lung cancer. Knockdown ANRIL can significantly inhibit the proliferation and migration of cancer cells, while also negatively regulating the expression of related miRNAs. This suggests that ANRIL may serve as a potential target for the development of drugs that provide new strategies to improve the effectiveness of cancer treatment. In our review, we summarize the current association between ANRIL and miRNAs in various cancers.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.