各种癌症中 ANRIL 与 MiRNA 之间的潜在联系

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Xiaoyan Yang, Liushan Wei, Shijie Wu, Zhizhong Xie, Xiaoyong Lei
{"title":"各种癌症中 ANRIL 与 MiRNA 之间的潜在联系","authors":"Xiaoyan Yang, Liushan Wei, Shijie Wu, Zhizhong Xie, Xiaoyong Lei","doi":"10.2174/0113862073294838240523035706","DOIUrl":null,"url":null,"abstract":"<p><p>Non-coding RNAs are mainly divided into two categories, one is small non-coding RNA represented by miRNA, and the other is long non-coding RNA longer than 200 bp. Further studies on non-coding RNAs have revealed that long non-coding RNAs not only have carcinogenic effects, but also have potential links with miRNAs. Antisense non-coding RNA in the INK4 locus (ANRIL/CDKN2B-AS1), one of the five subtypes of long non-coding RNA, has been proved to play a role of oncogene in many cancers, such as gastric cancer, cervical cancer, prostate cancer and non-small cell lung cancer. Knockdown ANRIL can significantly inhibit the proliferation and migration of cancer cells, while also negatively regulating the expression of related miRNAs. This suggests that ANRIL may serve as a potential target for the development of drugs that provide new strategies to improve the effectiveness of cancer treatment. In our review, we summarize the current association between ANRIL and miRNAs in various cancers.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential Links between ANRIL and MiRNAs in Various Cancers.\",\"authors\":\"Xiaoyan Yang, Liushan Wei, Shijie Wu, Zhizhong Xie, Xiaoyong Lei\",\"doi\":\"10.2174/0113862073294838240523035706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-coding RNAs are mainly divided into two categories, one is small non-coding RNA represented by miRNA, and the other is long non-coding RNA longer than 200 bp. Further studies on non-coding RNAs have revealed that long non-coding RNAs not only have carcinogenic effects, but also have potential links with miRNAs. Antisense non-coding RNA in the INK4 locus (ANRIL/CDKN2B-AS1), one of the five subtypes of long non-coding RNA, has been proved to play a role of oncogene in many cancers, such as gastric cancer, cervical cancer, prostate cancer and non-small cell lung cancer. Knockdown ANRIL can significantly inhibit the proliferation and migration of cancer cells, while also negatively regulating the expression of related miRNAs. This suggests that ANRIL may serve as a potential target for the development of drugs that provide new strategies to improve the effectiveness of cancer treatment. In our review, we summarize the current association between ANRIL and miRNAs in various cancers.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073294838240523035706\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073294838240523035706","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

非编码 RNA 主要分为两类,一类是以 miRNA 为代表的小非编码 RNA,另一类是长度超过 200 bp 的长非编码 RNA。对非编码 RNA 的进一步研究发现,长非编码 RNA 不仅有致癌作用,还与 miRNA 有潜在联系。INK4 基因座上的反义非编码 RNA(ANRIL/CDKN2B-AS1)是长非编码 RNA 的五个亚型之一,已被证实在胃癌、宫颈癌、前列腺癌和非小细胞肺癌等多种癌症中扮演着癌基因的角色。敲除 ANRIL 能显著抑制癌细胞的增殖和迁移,同时还能负向调节相关 miRNA 的表达。这表明,ANRIL 可作为开发药物的潜在靶点,为提高癌症治疗效果提供新策略。在我们的综述中,我们总结了目前 ANRIL 与各种癌症中 miRNA 之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential Links between ANRIL and MiRNAs in Various Cancers.

Non-coding RNAs are mainly divided into two categories, one is small non-coding RNA represented by miRNA, and the other is long non-coding RNA longer than 200 bp. Further studies on non-coding RNAs have revealed that long non-coding RNAs not only have carcinogenic effects, but also have potential links with miRNAs. Antisense non-coding RNA in the INK4 locus (ANRIL/CDKN2B-AS1), one of the five subtypes of long non-coding RNA, has been proved to play a role of oncogene in many cancers, such as gastric cancer, cervical cancer, prostate cancer and non-small cell lung cancer. Knockdown ANRIL can significantly inhibit the proliferation and migration of cancer cells, while also negatively regulating the expression of related miRNAs. This suggests that ANRIL may serve as a potential target for the development of drugs that provide new strategies to improve the effectiveness of cancer treatment. In our review, we summarize the current association between ANRIL and miRNAs in various cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
327
审稿时长
7.5 months
期刊介绍: Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal: Target identification and validation Assay design, development, miniaturization and comparison High throughput/high content/in silico screening and associated technologies Label-free detection technologies and applications Stem cell technologies Biomarkers ADMET/PK/PD methodologies and screening Probe discovery and development, hit to lead optimization Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) Chemical library design and chemical diversity Chemo/bio-informatics, data mining Compound management Pharmacognosy Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products) Natural Product Analytical Studies Bipharmaceutical studies of Natural products Drug repurposing Data management and statistical analysis Laboratory automation, robotics, microfluidics, signal detection technologies Current & Future Institutional Research Profile Technology transfer, legal and licensing issues Patents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信