Evren Algın Yapar, Merve Nur Ozdemir, Simona Cavalu, Özlem Akbal Dagıstan, Yıldız Ozsoy, Murat Kartal
{"title":"用于乳腺癌治疗的植物活性分子和纳米给药方法:当前和未来展望。","authors":"Evren Algın Yapar, Merve Nur Ozdemir, Simona Cavalu, Özlem Akbal Dagıstan, Yıldız Ozsoy, Murat Kartal","doi":"10.2174/0113892010299183240529094844","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most common malignancies in women, breast cancer accounts for nearly 25% of all cancer cases. Breast cancer is a diverse cancer form that exhibits variability in both morphology and molecular characteristics, and is linked to numerous risk factors. Although various approaches and research are ongoing in the treatment and prevention of breast cancer, medication resistance in the current breast cancer treatment contributes to the disease's relapse and recurrence. Phytoactive molecules are the subject of growing research in both breast cancer prevention and treatment but currently used conventional medicines and techniques limit their application. Recent years have seen significant advancements in the field of nanotechnology, which has proven to be essential in the fight against drug resistance. The transport of synthetic and natural anticancer molecules via nanocarriers has recently been added to breast cancer therapy, greatly alleviating the constraints of the current approach. In light of these developments, interest in nano-delivery studies of phytoactive molecules has also increased. In this review, research of phytoactive molecules for breast cancers along with their clinical studies and nanoformulations, was presented from current and future perspectives.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytoactive Molecules and Nanodelivery Approaches for Breast Cancer Treatment: Current and Future Perspectives.\",\"authors\":\"Evren Algın Yapar, Merve Nur Ozdemir, Simona Cavalu, Özlem Akbal Dagıstan, Yıldız Ozsoy, Murat Kartal\",\"doi\":\"10.2174/0113892010299183240529094844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the most common malignancies in women, breast cancer accounts for nearly 25% of all cancer cases. Breast cancer is a diverse cancer form that exhibits variability in both morphology and molecular characteristics, and is linked to numerous risk factors. Although various approaches and research are ongoing in the treatment and prevention of breast cancer, medication resistance in the current breast cancer treatment contributes to the disease's relapse and recurrence. Phytoactive molecules are the subject of growing research in both breast cancer prevention and treatment but currently used conventional medicines and techniques limit their application. Recent years have seen significant advancements in the field of nanotechnology, which has proven to be essential in the fight against drug resistance. The transport of synthetic and natural anticancer molecules via nanocarriers has recently been added to breast cancer therapy, greatly alleviating the constraints of the current approach. In light of these developments, interest in nano-delivery studies of phytoactive molecules has also increased. In this review, research of phytoactive molecules for breast cancers along with their clinical studies and nanoformulations, was presented from current and future perspectives.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010299183240529094844\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010299183240529094844","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Phytoactive Molecules and Nanodelivery Approaches for Breast Cancer Treatment: Current and Future Perspectives.
One of the most common malignancies in women, breast cancer accounts for nearly 25% of all cancer cases. Breast cancer is a diverse cancer form that exhibits variability in both morphology and molecular characteristics, and is linked to numerous risk factors. Although various approaches and research are ongoing in the treatment and prevention of breast cancer, medication resistance in the current breast cancer treatment contributes to the disease's relapse and recurrence. Phytoactive molecules are the subject of growing research in both breast cancer prevention and treatment but currently used conventional medicines and techniques limit their application. Recent years have seen significant advancements in the field of nanotechnology, which has proven to be essential in the fight against drug resistance. The transport of synthetic and natural anticancer molecules via nanocarriers has recently been added to breast cancer therapy, greatly alleviating the constraints of the current approach. In light of these developments, interest in nano-delivery studies of phytoactive molecules has also increased. In this review, research of phytoactive molecules for breast cancers along with their clinical studies and nanoformulations, was presented from current and future perspectives.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.