Carly Boye, Shreya Nirmalan, Ali Ranjbaran, Francesca Luca
{"title":"基因调控和复杂性状中基因型与环境的相互作用","authors":"Carly Boye, Shreya Nirmalan, Ali Ranjbaran, Francesca Luca","doi":"10.1038/s41588-024-01776-w","DOIUrl":null,"url":null,"abstract":"Genotype × environment interactions (GxE) have long been recognized as a key mechanism underlying human phenotypic variation. Technological developments over the past 15 years have dramatically expanded our appreciation of the role of GxE in both gene regulation and complex traits. The richness and complexity of these datasets also required parallel efforts to develop robust and sensitive statistical and computational approaches. Although our understanding of the genetic architecture of molecular and complex traits has been maturing, a large proportion of complex trait heritability remains unexplained. Furthermore, there are increasing efforts to characterize the effect of environmental exposure on human health. We therefore review GxE in human gene regulation and complex traits, advocating for a comprehensive approach that jointly considers genetic and environmental factors in human health and disease. Genotype × environment interactions are a key mechanism underlying human phenotypic variation and contribute to our understanding of the genetic architecture of human traits, with possible applications in personalized medicine.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"56 6","pages":"1057-1068"},"PeriodicalIF":29.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genotype × environment interactions in gene regulation and complex traits\",\"authors\":\"Carly Boye, Shreya Nirmalan, Ali Ranjbaran, Francesca Luca\",\"doi\":\"10.1038/s41588-024-01776-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genotype × environment interactions (GxE) have long been recognized as a key mechanism underlying human phenotypic variation. Technological developments over the past 15 years have dramatically expanded our appreciation of the role of GxE in both gene regulation and complex traits. The richness and complexity of these datasets also required parallel efforts to develop robust and sensitive statistical and computational approaches. Although our understanding of the genetic architecture of molecular and complex traits has been maturing, a large proportion of complex trait heritability remains unexplained. Furthermore, there are increasing efforts to characterize the effect of environmental exposure on human health. We therefore review GxE in human gene regulation and complex traits, advocating for a comprehensive approach that jointly considers genetic and environmental factors in human health and disease. Genotype × environment interactions are a key mechanism underlying human phenotypic variation and contribute to our understanding of the genetic architecture of human traits, with possible applications in personalized medicine.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"56 6\",\"pages\":\"1057-1068\"},\"PeriodicalIF\":29.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-024-01776-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01776-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genotype × environment interactions in gene regulation and complex traits
Genotype × environment interactions (GxE) have long been recognized as a key mechanism underlying human phenotypic variation. Technological developments over the past 15 years have dramatically expanded our appreciation of the role of GxE in both gene regulation and complex traits. The richness and complexity of these datasets also required parallel efforts to develop robust and sensitive statistical and computational approaches. Although our understanding of the genetic architecture of molecular and complex traits has been maturing, a large proportion of complex trait heritability remains unexplained. Furthermore, there are increasing efforts to characterize the effect of environmental exposure on human health. We therefore review GxE in human gene regulation and complex traits, advocating for a comprehensive approach that jointly considers genetic and environmental factors in human health and disease. Genotype × environment interactions are a key mechanism underlying human phenotypic variation and contribute to our understanding of the genetic architecture of human traits, with possible applications in personalized medicine.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution