{"title":"分数阶双稳态系统中相关非高斯和高斯噪声诱导的过渡和平均首过时间","authors":"Haoyu Chen, Yongfeng Guo, Qin Yu","doi":"10.1016/j.probengmech.2024.103638","DOIUrl":null,"url":null,"abstract":"<div><p>The transition and mean first-passage time(MFPT) in a fractional-order bistable system, excited by multiplicative non-Gaussian noise and additive Gaussian white noise, are investigated. Utilizing the fractional-order minimum mean square error criterion and the path integral approach, we derive approximate expressions for both the steady-state probability distribution function and the MFPT. The results show that the noise correlation strength, non-Gaussian parameter, Gaussian noise strength and fractional order can induce phase transitions. The MFPT exhibits a peak as a function of non-Gaussian noise intensity, demonstrating the noise-enhanced stability phenomenon, while the MFPT displays a consistent, monotonic relationship as a function of Gaussian white noise intensity. Numerical simulations are conducted to validate theoretical results, which show a reasonably high degree of consistency.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlated non-Gaussian and Gaussian noises induced transition and mean first-passage time in a fractional-order bistable system\",\"authors\":\"Haoyu Chen, Yongfeng Guo, Qin Yu\",\"doi\":\"10.1016/j.probengmech.2024.103638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The transition and mean first-passage time(MFPT) in a fractional-order bistable system, excited by multiplicative non-Gaussian noise and additive Gaussian white noise, are investigated. Utilizing the fractional-order minimum mean square error criterion and the path integral approach, we derive approximate expressions for both the steady-state probability distribution function and the MFPT. The results show that the noise correlation strength, non-Gaussian parameter, Gaussian noise strength and fractional order can induce phase transitions. The MFPT exhibits a peak as a function of non-Gaussian noise intensity, demonstrating the noise-enhanced stability phenomenon, while the MFPT displays a consistent, monotonic relationship as a function of Gaussian white noise intensity. Numerical simulations are conducted to validate theoretical results, which show a reasonably high degree of consistency.</p></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266892024000602\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000602","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Correlated non-Gaussian and Gaussian noises induced transition and mean first-passage time in a fractional-order bistable system
The transition and mean first-passage time(MFPT) in a fractional-order bistable system, excited by multiplicative non-Gaussian noise and additive Gaussian white noise, are investigated. Utilizing the fractional-order minimum mean square error criterion and the path integral approach, we derive approximate expressions for both the steady-state probability distribution function and the MFPT. The results show that the noise correlation strength, non-Gaussian parameter, Gaussian noise strength and fractional order can induce phase transitions. The MFPT exhibits a peak as a function of non-Gaussian noise intensity, demonstrating the noise-enhanced stability phenomenon, while the MFPT displays a consistent, monotonic relationship as a function of Gaussian white noise intensity. Numerical simulations are conducted to validate theoretical results, which show a reasonably high degree of consistency.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.