{"title":"无界树宽的 t 帆和稀疏遗传类","authors":"D. Cocks","doi":"10.1016/j.ejc.2024.104005","DOIUrl":null,"url":null,"abstract":"<div><p>It has long been known that the following basic objects are obstructions to bounded tree-width: for arbitrarily large <span><math><mi>t</mi></math></span>, <span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span> the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, <span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span> a subdivision of the <span><math><mrow><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></mrow></math></span>-wall and <span><math><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></math></span> the line graph of a subdivision of the <span><math><mrow><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></mrow></math></span>-wall. We now add a further <em>boundary object</em> to this list, a <span><math><mi>t</mi></math></span>-<em>sail</em>. These results have been obtained by studying sparse hereditary <em>path-star</em> graph classes, each of which consists of the finite induced subgraphs of a single infinite graph whose edges can be partitioned into a path (or forest of paths) with a forest of stars, characterised by an infinite word over a possibly infinite alphabet. We show that a path-star class whose infinite graph has an unbounded number of stars, each of which connects an unbounded number of times to the path, has unbounded tree-width. In addition, we show that such a class is not a subclass of the hereditary class of circle graphs. We identify a collection of <em>nested</em> words with a recursive structure that exhibit interesting characteristics when used to define a path-star graph class. These graph classes do not contain any of the four basic obstructions but instead contain graphs that have large tree-width if and only if they contain arbitrarily large <span><math><mi>t</mi></math></span>-sails. We show that these classes are infinitely defined and, like classes of bounded degree or classes excluding a fixed minor, do not contain a minimal class of unbounded tree-width.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000908/pdfft?md5=e4d9091488efe1ad037850e52d6372a3&pid=1-s2.0-S0195669824000908-main.pdf","citationCount":"0","resultStr":"{\"title\":\"t-sails and sparse hereditary classes of unbounded tree-width\",\"authors\":\"D. Cocks\",\"doi\":\"10.1016/j.ejc.2024.104005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It has long been known that the following basic objects are obstructions to bounded tree-width: for arbitrarily large <span><math><mi>t</mi></math></span>, <span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span> the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, <span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span> a subdivision of the <span><math><mrow><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></mrow></math></span>-wall and <span><math><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></math></span> the line graph of a subdivision of the <span><math><mrow><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></mrow></math></span>-wall. We now add a further <em>boundary object</em> to this list, a <span><math><mi>t</mi></math></span>-<em>sail</em>. These results have been obtained by studying sparse hereditary <em>path-star</em> graph classes, each of which consists of the finite induced subgraphs of a single infinite graph whose edges can be partitioned into a path (or forest of paths) with a forest of stars, characterised by an infinite word over a possibly infinite alphabet. We show that a path-star class whose infinite graph has an unbounded number of stars, each of which connects an unbounded number of times to the path, has unbounded tree-width. In addition, we show that such a class is not a subclass of the hereditary class of circle graphs. We identify a collection of <em>nested</em> words with a recursive structure that exhibit interesting characteristics when used to define a path-star graph class. These graph classes do not contain any of the four basic obstructions but instead contain graphs that have large tree-width if and only if they contain arbitrarily large <span><math><mi>t</mi></math></span>-sails. We show that these classes are infinitely defined and, like classes of bounded degree or classes excluding a fixed minor, do not contain a minimal class of unbounded tree-width.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000908/pdfft?md5=e4d9091488efe1ad037850e52d6372a3&pid=1-s2.0-S0195669824000908-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000908\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000908","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
t-sails and sparse hereditary classes of unbounded tree-width
It has long been known that the following basic objects are obstructions to bounded tree-width: for arbitrarily large , the complete graph , the complete bipartite graph , a subdivision of the -wall and the line graph of a subdivision of the -wall. We now add a further boundary object to this list, a -sail. These results have been obtained by studying sparse hereditary path-star graph classes, each of which consists of the finite induced subgraphs of a single infinite graph whose edges can be partitioned into a path (or forest of paths) with a forest of stars, characterised by an infinite word over a possibly infinite alphabet. We show that a path-star class whose infinite graph has an unbounded number of stars, each of which connects an unbounded number of times to the path, has unbounded tree-width. In addition, we show that such a class is not a subclass of the hereditary class of circle graphs. We identify a collection of nested words with a recursive structure that exhibit interesting characteristics when used to define a path-star graph class. These graph classes do not contain any of the four basic obstructions but instead contain graphs that have large tree-width if and only if they contain arbitrarily large -sails. We show that these classes are infinitely defined and, like classes of bounded degree or classes excluding a fixed minor, do not contain a minimal class of unbounded tree-width.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.