无界树宽的 t 帆和稀疏遗传类

IF 1 3区 数学 Q1 MATHEMATICS
D. Cocks
{"title":"无界树宽的 t 帆和稀疏遗传类","authors":"D. Cocks","doi":"10.1016/j.ejc.2024.104005","DOIUrl":null,"url":null,"abstract":"<div><p>It has long been known that the following basic objects are obstructions to bounded tree-width: for arbitrarily large <span><math><mi>t</mi></math></span>, <span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span> the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, <span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span> a subdivision of the <span><math><mrow><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></mrow></math></span>-wall and <span><math><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></math></span> the line graph of a subdivision of the <span><math><mrow><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></mrow></math></span>-wall. We now add a further <em>boundary object</em> to this list, a <span><math><mi>t</mi></math></span>-<em>sail</em>. These results have been obtained by studying sparse hereditary <em>path-star</em> graph classes, each of which consists of the finite induced subgraphs of a single infinite graph whose edges can be partitioned into a path (or forest of paths) with a forest of stars, characterised by an infinite word over a possibly infinite alphabet. We show that a path-star class whose infinite graph has an unbounded number of stars, each of which connects an unbounded number of times to the path, has unbounded tree-width. In addition, we show that such a class is not a subclass of the hereditary class of circle graphs. We identify a collection of <em>nested</em> words with a recursive structure that exhibit interesting characteristics when used to define a path-star graph class. These graph classes do not contain any of the four basic obstructions but instead contain graphs that have large tree-width if and only if they contain arbitrarily large <span><math><mi>t</mi></math></span>-sails. We show that these classes are infinitely defined and, like classes of bounded degree or classes excluding a fixed minor, do not contain a minimal class of unbounded tree-width.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000908/pdfft?md5=e4d9091488efe1ad037850e52d6372a3&pid=1-s2.0-S0195669824000908-main.pdf","citationCount":"0","resultStr":"{\"title\":\"t-sails and sparse hereditary classes of unbounded tree-width\",\"authors\":\"D. Cocks\",\"doi\":\"10.1016/j.ejc.2024.104005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It has long been known that the following basic objects are obstructions to bounded tree-width: for arbitrarily large <span><math><mi>t</mi></math></span>, <span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span> the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, <span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span> a subdivision of the <span><math><mrow><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></mrow></math></span>-wall and <span><math><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></math></span> the line graph of a subdivision of the <span><math><mrow><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></mrow></math></span>-wall. We now add a further <em>boundary object</em> to this list, a <span><math><mi>t</mi></math></span>-<em>sail</em>. These results have been obtained by studying sparse hereditary <em>path-star</em> graph classes, each of which consists of the finite induced subgraphs of a single infinite graph whose edges can be partitioned into a path (or forest of paths) with a forest of stars, characterised by an infinite word over a possibly infinite alphabet. We show that a path-star class whose infinite graph has an unbounded number of stars, each of which connects an unbounded number of times to the path, has unbounded tree-width. In addition, we show that such a class is not a subclass of the hereditary class of circle graphs. We identify a collection of <em>nested</em> words with a recursive structure that exhibit interesting characteristics when used to define a path-star graph class. These graph classes do not contain any of the four basic obstructions but instead contain graphs that have large tree-width if and only if they contain arbitrarily large <span><math><mi>t</mi></math></span>-sails. We show that these classes are infinitely defined and, like classes of bounded degree or classes excluding a fixed minor, do not contain a minimal class of unbounded tree-width.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000908/pdfft?md5=e4d9091488efe1ad037850e52d6372a3&pid=1-s2.0-S0195669824000908-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000908\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000908","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

人们早已知道,下列基本对象是有界树宽的障碍:对于任意大的 t,(1) 完整图 Kt,(2) 完整的双方图 Kt,t,(3) (t×t)-wall 的一个细分图,以及 (t×t)-wall 的一个细分图的线图。现在,我们在此基础上增加了一个边界对象--"t-帆"。这些结果是通过研究稀疏遗传路径-星图类得到的,其中每个类都由单个无限图的有限诱导子图组成,其边可以划分为一条路径(或路径林)和一个星图林,星图林的特征是在可能是无限的字母表上有一个无限的词。我们证明,无限图中的路径-星级类具有无限的树宽,其无限图中的星级数量不可限量,每个星级连接路径的次数不可限量。此外,我们还证明了这类图不是圆图遗传类的子类。我们发现了一系列具有递归结构的嵌套词,这些词在用来定义路径星图类时表现出了有趣的特征。这些图类不包含四个基本障碍中的任何一个,而是包含当且仅当它们包含任意大的 T 形帆时才具有大树宽的图。我们证明了这些类是无限定义的,并且与有界阶数类或不包含固定小数的类一样,不包含树宽无界的最小类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
t-sails and sparse hereditary classes of unbounded tree-width

It has long been known that the following basic objects are obstructions to bounded tree-width: for arbitrarily large t, (1) the complete graph Kt, (2) the complete bipartite graph Kt,t, (3) a subdivision of the (t×t)-wall and (4) the line graph of a subdivision of the (t×t)-wall. We now add a further boundary object to this list, a t-sail. These results have been obtained by studying sparse hereditary path-star graph classes, each of which consists of the finite induced subgraphs of a single infinite graph whose edges can be partitioned into a path (or forest of paths) with a forest of stars, characterised by an infinite word over a possibly infinite alphabet. We show that a path-star class whose infinite graph has an unbounded number of stars, each of which connects an unbounded number of times to the path, has unbounded tree-width. In addition, we show that such a class is not a subclass of the hereditary class of circle graphs. We identify a collection of nested words with a recursive structure that exhibit interesting characteristics when used to define a path-star graph class. These graph classes do not contain any of the four basic obstructions but instead contain graphs that have large tree-width if and only if they contain arbitrarily large t-sails. We show that these classes are infinitely defined and, like classes of bounded degree or classes excluding a fixed minor, do not contain a minimal class of unbounded tree-width.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信