Alejandro Herreros-Pomares, David Hervás, Leticia Bagán, Alex Proaño, José Bagan
{"title":"增殖性疣状白斑病和均质白斑病表现出不同的甲基化模式。","authors":"Alejandro Herreros-Pomares, David Hervás, Leticia Bagán, Alex Proaño, José Bagan","doi":"10.1111/odi.15028","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Proliferative verrucous leukoplakia (PVL) is considered a clinically distinct entity from other oral leucoplakias (OLs) due to its clinical presentation and evolution. However, molecular differences between them remain unclear. We aimed to determine whether there are methylation differences between PVL and other forms of OLs.</p><p><strong>Materials and methods: </strong>Oral biopsies from 12 patients with PVL, eight patients with homogeneous leucoplakia (HL), and 10 healthy individuals were obtained for a genome-wide DNA methylation analysis via the Infinium EPIC Platform.</p><p><strong>Results: </strong>A total of 1815 differentially methylated CpGs were found between PVL and HL, with a prominent state of hypermethylation in HL patients. CpGs covered 813 genes with distinct roles, including cell adhesion, extracellular matrix organization, and cell and synaptic signaling. 43% of these genes had been previously described in cancer and associated with prognosis. We developed a multinomial logistic regression model able to differentiate HL, PVL, and control samples. The model had a cross-validated estimate of 73% and included differentially methylated cancer-related genes between the pathological conditions and the healthy donors, including ADNP, BRCA2, CDK13, GNB1, NIN, NUMB, PIK3C2B, PTK2, SHISA4, THSD7B, WWP1, and ZNF292. It also included CpGs covering differentially methylated genes in HL (MEN1 and TNRC6B) and PVL (ACOXL, ADH1B, CAMTA1, CBFA2T3, CPXM2, LRFN2, SORCS2, and SPN).</p><p><strong>Conclusions: </strong>PVL and HL present differential methylation patterns that could be linked to their differential clinical behavior. Our findings show the potential of methylation markers and suggest novel diagnostic biomarkers.</p>","PeriodicalId":19615,"journal":{"name":"Oral diseases","volume":" ","pages":"137-147"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808169/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proliferative verrucous and homogeneous Leukoplakias exhibit differential methylation patterns.\",\"authors\":\"Alejandro Herreros-Pomares, David Hervás, Leticia Bagán, Alex Proaño, José Bagan\",\"doi\":\"10.1111/odi.15028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Proliferative verrucous leukoplakia (PVL) is considered a clinically distinct entity from other oral leucoplakias (OLs) due to its clinical presentation and evolution. However, molecular differences between them remain unclear. We aimed to determine whether there are methylation differences between PVL and other forms of OLs.</p><p><strong>Materials and methods: </strong>Oral biopsies from 12 patients with PVL, eight patients with homogeneous leucoplakia (HL), and 10 healthy individuals were obtained for a genome-wide DNA methylation analysis via the Infinium EPIC Platform.</p><p><strong>Results: </strong>A total of 1815 differentially methylated CpGs were found between PVL and HL, with a prominent state of hypermethylation in HL patients. CpGs covered 813 genes with distinct roles, including cell adhesion, extracellular matrix organization, and cell and synaptic signaling. 43% of these genes had been previously described in cancer and associated with prognosis. We developed a multinomial logistic regression model able to differentiate HL, PVL, and control samples. The model had a cross-validated estimate of 73% and included differentially methylated cancer-related genes between the pathological conditions and the healthy donors, including ADNP, BRCA2, CDK13, GNB1, NIN, NUMB, PIK3C2B, PTK2, SHISA4, THSD7B, WWP1, and ZNF292. It also included CpGs covering differentially methylated genes in HL (MEN1 and TNRC6B) and PVL (ACOXL, ADH1B, CAMTA1, CBFA2T3, CPXM2, LRFN2, SORCS2, and SPN).</p><p><strong>Conclusions: </strong>PVL and HL present differential methylation patterns that could be linked to their differential clinical behavior. Our findings show the potential of methylation markers and suggest novel diagnostic biomarkers.</p>\",\"PeriodicalId\":19615,\"journal\":{\"name\":\"Oral diseases\",\"volume\":\" \",\"pages\":\"137-147\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808169/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oral diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/odi.15028\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/odi.15028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Proliferative verrucous and homogeneous Leukoplakias exhibit differential methylation patterns.
Objective: Proliferative verrucous leukoplakia (PVL) is considered a clinically distinct entity from other oral leucoplakias (OLs) due to its clinical presentation and evolution. However, molecular differences between them remain unclear. We aimed to determine whether there are methylation differences between PVL and other forms of OLs.
Materials and methods: Oral biopsies from 12 patients with PVL, eight patients with homogeneous leucoplakia (HL), and 10 healthy individuals were obtained for a genome-wide DNA methylation analysis via the Infinium EPIC Platform.
Results: A total of 1815 differentially methylated CpGs were found between PVL and HL, with a prominent state of hypermethylation in HL patients. CpGs covered 813 genes with distinct roles, including cell adhesion, extracellular matrix organization, and cell and synaptic signaling. 43% of these genes had been previously described in cancer and associated with prognosis. We developed a multinomial logistic regression model able to differentiate HL, PVL, and control samples. The model had a cross-validated estimate of 73% and included differentially methylated cancer-related genes between the pathological conditions and the healthy donors, including ADNP, BRCA2, CDK13, GNB1, NIN, NUMB, PIK3C2B, PTK2, SHISA4, THSD7B, WWP1, and ZNF292. It also included CpGs covering differentially methylated genes in HL (MEN1 and TNRC6B) and PVL (ACOXL, ADH1B, CAMTA1, CBFA2T3, CPXM2, LRFN2, SORCS2, and SPN).
Conclusions: PVL and HL present differential methylation patterns that could be linked to their differential clinical behavior. Our findings show the potential of methylation markers and suggest novel diagnostic biomarkers.
期刊介绍:
Oral Diseases is a multidisciplinary and international journal with a focus on head and neck disorders, edited by leaders in the field, Professor Giovanni Lodi (Editor-in-Chief, Milan, Italy), Professor Stefano Petti (Deputy Editor, Rome, Italy) and Associate Professor Gulshan Sunavala-Dossabhoy (Deputy Editor, Shreveport, LA, USA). The journal is pre-eminent in oral medicine. Oral Diseases specifically strives to link often-isolated areas of dentistry and medicine through broad-based scholarship that includes well-designed and controlled clinical research, analytical epidemiology, and the translation of basic science in pre-clinical studies. The journal typically publishes articles relevant to many related medical specialties including especially dermatology, gastroenterology, hematology, immunology, infectious diseases, neuropsychiatry, oncology and otolaryngology. The essential requirement is that all submitted research is hypothesis-driven, with significant positive and negative results both welcomed. Equal publication emphasis is placed on etiology, pathogenesis, diagnosis, prevention and treatment.