GO/NiFe2O4-MnFe2O4-CoFe2O4 复合负极材料的制备:实现高性能混合超级电容器。

IF 2 3区 工程技术 Q2 ANATOMY & MORPHOLOGY
Seyed Ali Hosseini Moradi, Nader Ghobadi
{"title":"GO/NiFe2O4-MnFe2O4-CoFe2O4 复合负极材料的制备:实现高性能混合超级电容器。","authors":"Seyed Ali Hosseini Moradi,&nbsp;Nader Ghobadi","doi":"10.1002/jemt.24615","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Here, NiFe<sub>2</sub>O<sub>4</sub>, MnFe<sub>2</sub>O<sub>4</sub>, and CoFe<sub>2</sub>O<sub>4</sub> nanoferrites are prepared by coprecipitation synthesis technique from nickel, manganese, and cobalt chloride precursors. Synthesized nanoferrites are annealed by calcination process at 800°C for 2 h. To produce a novel anode electrode material for asymmetric supercapacitors (ASCs), the composite material of GO/NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub> is fabricated. Physicochemical aspects of the synthesized nanoferrites are evaluated. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy tests are conducted, respectively. The electrochemical activities are studied by cyclic voltammetry, glavanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) in 2 M KOH as the electrolyte. In three electrode system, the novel GO/NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub> electrode displays a high specific capacity of 325 C g<sup>−1</sup> and preserves about 99.9% of its initial specific capacity. The GO/NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub>//GO ASCs device is assembled using GO/NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub>, GO, and 2 M KOH solution as the positive electrode, negative electrode, and electrolyte, respectively. Significantly, the GO/NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub>//GO ASCs represent an outstanding energy density of 50.5 W h kg<sup>−1</sup> at power density of 2560 W kg<sup>−1</sup>. Through the long-term charge discharge cycling tests, this ASC device illustrates about 93.7% capacity retention after 3000 cycles. Then, the present study provides the NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub> composite nanoferrites as a novel favorable candidate for anode material.</p>\n </section>\n \n <section>\n \n <h3> Research Highlights</h3>\n \n <div>\n <ul>\n \n <li>Simple and green synthesis of magnetic NiCo<sub>2</sub>O<sub>4</sub>/NiO/rGO composite nanostructure using natural precursor.</li>\n \n <li>Fabricating and designing an efficient semiconductor for degradation ability.</li>\n \n <li>NiCo<sub>2</sub>O<sub>4</sub>/NiO/rGO nanocomposite with advanced photo elimination catalytic routine.</li>\n \n <li>The photocatalytic performance of NiCo<sub>2</sub>O<sub>4</sub>/NiO/rGO was surveyed for the degradation of various antibiotics below visible radiation.</li>\n \n <li>Efficiency was 92.9% to eliminate tetracycline.</li>\n </ul>\n </div>\n \n <p>We developed a synergetic approach to prepare a novel active material composed of GO/ NiFe2O4-MnFe2O4-CoFe2O4 by a hybrid electrode material. Green synthesis method was accomplished to attain NiCo<sub>2</sub>O<sub>4</sub>/NiO/rGO nanocomposite with advanced photo elimination catalytic routine. The oxide nanobundles were prepared with a rapid and eco-friendly method. In order to investigation of the effect of natural precursor, morphology and shape of nanoproducts was compared. NiCo<sub>2</sub>O<sub>4</sub>/NiO/rGO nanobundles possess a suitable bandgap in the visible area.</p>\n </section>\n </div>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of composite GO/NiFe2O4-MnFe2O4-CoFe2O4 anode material: Toward high performance hybrid supercapacitors\",\"authors\":\"Seyed Ali Hosseini Moradi,&nbsp;Nader Ghobadi\",\"doi\":\"10.1002/jemt.24615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Here, NiFe<sub>2</sub>O<sub>4</sub>, MnFe<sub>2</sub>O<sub>4</sub>, and CoFe<sub>2</sub>O<sub>4</sub> nanoferrites are prepared by coprecipitation synthesis technique from nickel, manganese, and cobalt chloride precursors. Synthesized nanoferrites are annealed by calcination process at 800°C for 2 h. To produce a novel anode electrode material for asymmetric supercapacitors (ASCs), the composite material of GO/NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub> is fabricated. Physicochemical aspects of the synthesized nanoferrites are evaluated. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy tests are conducted, respectively. The electrochemical activities are studied by cyclic voltammetry, glavanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) in 2 M KOH as the electrolyte. In three electrode system, the novel GO/NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub> electrode displays a high specific capacity of 325 C g<sup>−1</sup> and preserves about 99.9% of its initial specific capacity. The GO/NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub>//GO ASCs device is assembled using GO/NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub>, GO, and 2 M KOH solution as the positive electrode, negative electrode, and electrolyte, respectively. Significantly, the GO/NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub>//GO ASCs represent an outstanding energy density of 50.5 W h kg<sup>−1</sup> at power density of 2560 W kg<sup>−1</sup>. Through the long-term charge discharge cycling tests, this ASC device illustrates about 93.7% capacity retention after 3000 cycles. Then, the present study provides the NiFe<sub>2</sub>O<sub>4</sub>-MnFe<sub>2</sub>O<sub>4</sub>-CoFe<sub>2</sub>O<sub>4</sub> composite nanoferrites as a novel favorable candidate for anode material.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Research Highlights</h3>\\n \\n <div>\\n <ul>\\n \\n <li>Simple and green synthesis of magnetic NiCo<sub>2</sub>O<sub>4</sub>/NiO/rGO composite nanostructure using natural precursor.</li>\\n \\n <li>Fabricating and designing an efficient semiconductor for degradation ability.</li>\\n \\n <li>NiCo<sub>2</sub>O<sub>4</sub>/NiO/rGO nanocomposite with advanced photo elimination catalytic routine.</li>\\n \\n <li>The photocatalytic performance of NiCo<sub>2</sub>O<sub>4</sub>/NiO/rGO was surveyed for the degradation of various antibiotics below visible radiation.</li>\\n \\n <li>Efficiency was 92.9% to eliminate tetracycline.</li>\\n </ul>\\n </div>\\n \\n <p>We developed a synergetic approach to prepare a novel active material composed of GO/ NiFe2O4-MnFe2O4-CoFe2O4 by a hybrid electrode material. Green synthesis method was accomplished to attain NiCo<sub>2</sub>O<sub>4</sub>/NiO/rGO nanocomposite with advanced photo elimination catalytic routine. The oxide nanobundles were prepared with a rapid and eco-friendly method. In order to investigation of the effect of natural precursor, morphology and shape of nanoproducts was compared. NiCo<sub>2</sub>O<sub>4</sub>/NiO/rGO nanobundles possess a suitable bandgap in the visible area.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jemt.24615\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jemt.24615","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用共沉淀合成技术,以氯化镍、锰和钴为前体,制备了 NiFe2O4、MnFe2O4 和 CoFe2O4 纳米铁氧体。为了生产一种新型的非对称超级电容器(ASCs)阳极电极材料,制备了 GO/NiFe2O4-MnFe2O4-CoFe2O4 复合材料。对合成的纳米铁氧体进行了物理化学方面的评估。分别进行了 X 射线衍射、傅立叶变换红外光谱、扫描电子显微镜和 X 射线光电子能谱测试。在 2 M KOH 作为电解质的条件下,通过循环伏安法、静电充放电法和电化学阻抗谱法研究了其电化学活性。在三个电极体系中,新型 GO/NiFe2O4-MnFe2O4-CoFe2O4 电极显示出 325 C g-1 的高比容量,并保持了约 99.9% 的初始比容量。GO/NiFe2O4-MnFe2O4-CoFe2O4/GO ASCs 器件分别以 GO/NiFe2O4-MnFe2O4-CoFe2O4、GO 和 2 M KOH 溶液为正极、负极和电解液组装而成。值得注意的是,在功率密度为 2560 W kg-1 时,GO/NiFe2O4-MnFe2O4-CoFe2O4/GO ASCs 的能量密度高达 50.5 W h kg-1。通过长期充放电循环测试,该 ASC 器件在 3000 次循环后的容量保持率约为 93.7%。因此,本研究将 NiFe2O4-MnFe2O4-CoFe2O4 复合纳米铁氧体作为新型负极材料的有利候选材料。研究亮点利用天然前驱体简单绿色地合成磁性 NiCo2O4/NiO/rGO 复合纳米结构。制造和设计一种具有降解能力的高效半导体。具有先进光消除催化作用的 NiCo2O4/NiO/rGO 纳米复合材料。研究了 NiCo2O4/NiO/rGO 在可见光辐射下降解各种抗生素的光催化性能。消除四环素的效率为 92.9%。我们开发了一种协同方法,通过混合电极材料制备了一种由 GO/NiFe2O4-MnFe2O4-CoFe2O4 组成的新型活性材料。我们采用绿色合成方法,通过先进的光消除催化程序制备出了镍钴氧化物/镍氧化物/rGO 纳米复合材料。氧化物纳米束的制备过程既快速又环保。为了研究天然前驱体的影响,比较了纳米产品的形态和形状。NiCo2O4/NiO/rGO 纳米束在可见光区域具有合适的带隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fabrication of composite GO/NiFe2O4-MnFe2O4-CoFe2O4 anode material: Toward high performance hybrid supercapacitors

Fabrication of composite GO/NiFe2O4-MnFe2O4-CoFe2O4 anode material: Toward high performance hybrid supercapacitors

Here, NiFe2O4, MnFe2O4, and CoFe2O4 nanoferrites are prepared by coprecipitation synthesis technique from nickel, manganese, and cobalt chloride precursors. Synthesized nanoferrites are annealed by calcination process at 800°C for 2 h. To produce a novel anode electrode material for asymmetric supercapacitors (ASCs), the composite material of GO/NiFe2O4-MnFe2O4-CoFe2O4 is fabricated. Physicochemical aspects of the synthesized nanoferrites are evaluated. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy tests are conducted, respectively. The electrochemical activities are studied by cyclic voltammetry, glavanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) in 2 M KOH as the electrolyte. In three electrode system, the novel GO/NiFe2O4-MnFe2O4-CoFe2O4 electrode displays a high specific capacity of 325 C g−1 and preserves about 99.9% of its initial specific capacity. The GO/NiFe2O4-MnFe2O4-CoFe2O4//GO ASCs device is assembled using GO/NiFe2O4-MnFe2O4-CoFe2O4, GO, and 2 M KOH solution as the positive electrode, negative electrode, and electrolyte, respectively. Significantly, the GO/NiFe2O4-MnFe2O4-CoFe2O4//GO ASCs represent an outstanding energy density of 50.5 W h kg−1 at power density of 2560 W kg−1. Through the long-term charge discharge cycling tests, this ASC device illustrates about 93.7% capacity retention after 3000 cycles. Then, the present study provides the NiFe2O4-MnFe2O4-CoFe2O4 composite nanoferrites as a novel favorable candidate for anode material.

Research Highlights

  • Simple and green synthesis of magnetic NiCo2O4/NiO/rGO composite nanostructure using natural precursor.
  • Fabricating and designing an efficient semiconductor for degradation ability.
  • NiCo2O4/NiO/rGO nanocomposite with advanced photo elimination catalytic routine.
  • The photocatalytic performance of NiCo2O4/NiO/rGO was surveyed for the degradation of various antibiotics below visible radiation.
  • Efficiency was 92.9% to eliminate tetracycline.

We developed a synergetic approach to prepare a novel active material composed of GO/ NiFe2O4-MnFe2O4-CoFe2O4 by a hybrid electrode material. Green synthesis method was accomplished to attain NiCo2O4/NiO/rGO nanocomposite with advanced photo elimination catalytic routine. The oxide nanobundles were prepared with a rapid and eco-friendly method. In order to investigation of the effect of natural precursor, morphology and shape of nanoproducts was compared. NiCo2O4/NiO/rGO nanobundles possess a suitable bandgap in the visible area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信