Dan Wang, Zhiqiang Lin, Meixia Su, Yiqing Zhou, Mengjie Ma, Minghui Li
{"title":"揭示 Peg13 的作用:缓解败血症炎症的有望治疗靶点。","authors":"Dan Wang, Zhiqiang Lin, Meixia Su, Yiqing Zhou, Mengjie Ma, Minghui Li","doi":"10.1590/1678-4685-GMB-2023-0205","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the role of Peg13 in modulating the inflammatory response in sepsis, we established Lipopolysaccharide (LPS)-induced 293T cells and mouse models. Peg13 expression was assessed at various time points after infection using RT-qPCR. The levels of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) were quantified through ELISA. A total of 44 septic patients and 36 healthy participants were recruited to measure Peg13 and HMGB1 levels in the blood. Peg13 demonstrated significant down-regulation in the supernatant of LPS-induced 293T cells and in the blood of LPS-induced mice. Moreover, the levels of proinflammatory cytokines HMGB1 and IL-6 were elevated in both the supernatant of LPS-induced cell models and blood specimens from LPS-induced murine models, and this elevation could be notably reduced by Peg13 suppression. In a clinical context, Peg13 and HMGB1 levels were higher in septic patients compared to healthy subjects. Peg13 exhibited a negative correlation with HMGB1, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) among septic patients. Peg13 mitigates the inflammatory response by reducing the release of proinflammatory cytokines HMGB1 and IL-6 in sepsis, presenting a potential therapeutic target for alleviating inflammation in sepsis treatment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151158/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revealing the role of Peg13: A promising therapeutic target for mitigating inflammation in sepsis.\",\"authors\":\"Dan Wang, Zhiqiang Lin, Meixia Su, Yiqing Zhou, Mengjie Ma, Minghui Li\",\"doi\":\"10.1590/1678-4685-GMB-2023-0205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To investigate the role of Peg13 in modulating the inflammatory response in sepsis, we established Lipopolysaccharide (LPS)-induced 293T cells and mouse models. Peg13 expression was assessed at various time points after infection using RT-qPCR. The levels of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) were quantified through ELISA. A total of 44 septic patients and 36 healthy participants were recruited to measure Peg13 and HMGB1 levels in the blood. Peg13 demonstrated significant down-regulation in the supernatant of LPS-induced 293T cells and in the blood of LPS-induced mice. Moreover, the levels of proinflammatory cytokines HMGB1 and IL-6 were elevated in both the supernatant of LPS-induced cell models and blood specimens from LPS-induced murine models, and this elevation could be notably reduced by Peg13 suppression. In a clinical context, Peg13 and HMGB1 levels were higher in septic patients compared to healthy subjects. Peg13 exhibited a negative correlation with HMGB1, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) among septic patients. Peg13 mitigates the inflammatory response by reducing the release of proinflammatory cytokines HMGB1 and IL-6 in sepsis, presenting a potential therapeutic target for alleviating inflammation in sepsis treatment.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151158/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-4685-GMB-2023-0205\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0205","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Revealing the role of Peg13: A promising therapeutic target for mitigating inflammation in sepsis.
To investigate the role of Peg13 in modulating the inflammatory response in sepsis, we established Lipopolysaccharide (LPS)-induced 293T cells and mouse models. Peg13 expression was assessed at various time points after infection using RT-qPCR. The levels of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) were quantified through ELISA. A total of 44 septic patients and 36 healthy participants were recruited to measure Peg13 and HMGB1 levels in the blood. Peg13 demonstrated significant down-regulation in the supernatant of LPS-induced 293T cells and in the blood of LPS-induced mice. Moreover, the levels of proinflammatory cytokines HMGB1 and IL-6 were elevated in both the supernatant of LPS-induced cell models and blood specimens from LPS-induced murine models, and this elevation could be notably reduced by Peg13 suppression. In a clinical context, Peg13 and HMGB1 levels were higher in septic patients compared to healthy subjects. Peg13 exhibited a negative correlation with HMGB1, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) among septic patients. Peg13 mitigates the inflammatory response by reducing the release of proinflammatory cytokines HMGB1 and IL-6 in sepsis, presenting a potential therapeutic target for alleviating inflammation in sepsis treatment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.