{"title":"预测中国高中生超重的发生:一年前瞻性队列研究中的机器学习方法。","authors":"Zikang Zhang, Wei Peng, Shaoming Sun, Jianguo Ma, Yining Sun, Fangwen Zhang","doi":"10.1007/s12020-024-03902-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop and evaluate machine-learning models for predicting the onset of overweight in adolescents aged 14‒17, utilizing easily collectible personal information.</p><p><strong>Methods: </strong>This study was a one-year prospective cohort study. Baseline data were collected through anthropometric measurements and questionnaires, and the incidence of overweight was calculated one year later via anthropometric measurements. Predictive factors were selected through univariate analysis. Six machine-learning models were developed for predicting the onset of overweight. The SHapley Additive exPlanations (SHAP) was used for global and local interpretation of the models.</p><p><strong>Results: </strong>Out of 1,241 adolescents, 204 (16.4%) were identified as overweight after one year. Nineteen features were associated with the overweight incidence in univariable analysis. Participants were randomly divided into a training group and a testing group in a 7:3 ratio. The Light Gradient Boosting Machine (LGBM) algorithm achieved outperformed other models, achieving the following metrics: Accuracy (0.956), Recall (0.812), Specificity (0.983), F1-score (0.855), AUC (0.961). Importance ranking revealed that the top 11 minimal feature set can maintain the stability of model performance.</p><p><strong>Conclusions: </strong>The onset of overweight in adolescents was accurately predicted using easily collectible personal information. The LGBM-based model exhibited superior performance. Oversampling technique notably improved model performance. The model interpretation technique provided innovative strategies for managing adolescent overweight/obesity.</p>","PeriodicalId":11572,"journal":{"name":"Endocrine","volume":" ","pages":"600-611"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the onset of overweight in Chinese high school students: a machine-learning approach in a one-year prospective cohort study.\",\"authors\":\"Zikang Zhang, Wei Peng, Shaoming Sun, Jianguo Ma, Yining Sun, Fangwen Zhang\",\"doi\":\"10.1007/s12020-024-03902-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aimed to develop and evaluate machine-learning models for predicting the onset of overweight in adolescents aged 14‒17, utilizing easily collectible personal information.</p><p><strong>Methods: </strong>This study was a one-year prospective cohort study. Baseline data were collected through anthropometric measurements and questionnaires, and the incidence of overweight was calculated one year later via anthropometric measurements. Predictive factors were selected through univariate analysis. Six machine-learning models were developed for predicting the onset of overweight. The SHapley Additive exPlanations (SHAP) was used for global and local interpretation of the models.</p><p><strong>Results: </strong>Out of 1,241 adolescents, 204 (16.4%) were identified as overweight after one year. Nineteen features were associated with the overweight incidence in univariable analysis. Participants were randomly divided into a training group and a testing group in a 7:3 ratio. The Light Gradient Boosting Machine (LGBM) algorithm achieved outperformed other models, achieving the following metrics: Accuracy (0.956), Recall (0.812), Specificity (0.983), F1-score (0.855), AUC (0.961). Importance ranking revealed that the top 11 minimal feature set can maintain the stability of model performance.</p><p><strong>Conclusions: </strong>The onset of overweight in adolescents was accurately predicted using easily collectible personal information. The LGBM-based model exhibited superior performance. Oversampling technique notably improved model performance. The model interpretation technique provided innovative strategies for managing adolescent overweight/obesity.</p>\",\"PeriodicalId\":11572,\"journal\":{\"name\":\"Endocrine\",\"volume\":\" \",\"pages\":\"600-611\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12020-024-03902-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12020-024-03902-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Predicting the onset of overweight in Chinese high school students: a machine-learning approach in a one-year prospective cohort study.
Objective: This study aimed to develop and evaluate machine-learning models for predicting the onset of overweight in adolescents aged 14‒17, utilizing easily collectible personal information.
Methods: This study was a one-year prospective cohort study. Baseline data were collected through anthropometric measurements and questionnaires, and the incidence of overweight was calculated one year later via anthropometric measurements. Predictive factors were selected through univariate analysis. Six machine-learning models were developed for predicting the onset of overweight. The SHapley Additive exPlanations (SHAP) was used for global and local interpretation of the models.
Results: Out of 1,241 adolescents, 204 (16.4%) were identified as overweight after one year. Nineteen features were associated with the overweight incidence in univariable analysis. Participants were randomly divided into a training group and a testing group in a 7:3 ratio. The Light Gradient Boosting Machine (LGBM) algorithm achieved outperformed other models, achieving the following metrics: Accuracy (0.956), Recall (0.812), Specificity (0.983), F1-score (0.855), AUC (0.961). Importance ranking revealed that the top 11 minimal feature set can maintain the stability of model performance.
Conclusions: The onset of overweight in adolescents was accurately predicted using easily collectible personal information. The LGBM-based model exhibited superior performance. Oversampling technique notably improved model performance. The model interpretation technique provided innovative strategies for managing adolescent overweight/obesity.
期刊介绍:
Well-established as a major journal in today’s rapidly advancing experimental and clinical research areas, Endocrine publishes original articles devoted to basic (including molecular, cellular and physiological studies), translational and clinical research in all the different fields of endocrinology and metabolism. Articles will be accepted based on peer-reviews, priority, and editorial decision. Invited reviews, mini-reviews and viewpoints on relevant pathophysiological and clinical topics, as well as Editorials on articles appearing in the Journal, are published. Unsolicited Editorials will be evaluated by the editorial team. Outcomes of scientific meetings, as well as guidelines and position statements, may be submitted. The Journal also considers special feature articles in the field of endocrine genetics and epigenetics, as well as articles devoted to novel methods and techniques in endocrinology.
Endocrine covers controversial, clinical endocrine issues. Meta-analyses on endocrine and metabolic topics are also accepted. Descriptions of single clinical cases and/or small patients studies are not published unless of exceptional interest. However, reports of novel imaging studies and endocrine side effects in single patients may be considered. Research letters and letters to the editor related or unrelated to recently published articles can be submitted.
Endocrine covers leading topics in endocrinology such as neuroendocrinology, pituitary and hypothalamic peptides, thyroid physiological and clinical aspects, bone and mineral metabolism and osteoporosis, obesity, lipid and energy metabolism and food intake control, insulin, Type 1 and Type 2 diabetes, hormones of male and female reproduction, adrenal diseases pediatric and geriatric endocrinology, endocrine hypertension and endocrine oncology.