Luis Miguel Torres Escalante, Akira Tsuchiya, Lou Zhanrui, Miki Morinobu, Kunio Ishikawa
{"title":"使用具有不同孔隙分布的半水硫酸钙颗粒制作自凝颗粒水泥并进行组织学评估。","authors":"Luis Miguel Torres Escalante, Akira Tsuchiya, Lou Zhanrui, Miki Morinobu, Kunio Ishikawa","doi":"10.4012/dmj.2023-248","DOIUrl":null,"url":null,"abstract":"<p><p>Granular type of bone substitutes is currently used in the field of dentistry to restore alveolar bone defects. However, the migration of the granules from the implantation site is still an unresolved issue. In this study, the feasibility to fabricate self-setting calcium sulfate hemihydrate (CSH) granules using different ranges of loading pressure: CSH(0), CSH(50), CSH(100), and CSH(150) was investigated with the hypothesis that CSH granules with reduced microporosity can inhibit the rapid dissolution rate of the calcium sulfate dihydrate (CSD) set blocks and induce bone regeneration. After 4 weeks of implantation, the granules were mostly replaced with new bone although no significant differences were observed. Nevertheless, the granules demonstrated the ability to set within the bone defect. It is therefore concluded that the setting ability of calcium sulfate can contribute to address the issue of migration of the granules and provide a useful guide for designing setting bone substitutes.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"573-581"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and histological evaluation of a self-setting granular cement using calcium sulfate hemihydrate granules with different pore distribution.\",\"authors\":\"Luis Miguel Torres Escalante, Akira Tsuchiya, Lou Zhanrui, Miki Morinobu, Kunio Ishikawa\",\"doi\":\"10.4012/dmj.2023-248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Granular type of bone substitutes is currently used in the field of dentistry to restore alveolar bone defects. However, the migration of the granules from the implantation site is still an unresolved issue. In this study, the feasibility to fabricate self-setting calcium sulfate hemihydrate (CSH) granules using different ranges of loading pressure: CSH(0), CSH(50), CSH(100), and CSH(150) was investigated with the hypothesis that CSH granules with reduced microporosity can inhibit the rapid dissolution rate of the calcium sulfate dihydrate (CSD) set blocks and induce bone regeneration. After 4 weeks of implantation, the granules were mostly replaced with new bone although no significant differences were observed. Nevertheless, the granules demonstrated the ability to set within the bone defect. It is therefore concluded that the setting ability of calcium sulfate can contribute to address the issue of migration of the granules and provide a useful guide for designing setting bone substitutes.</p>\",\"PeriodicalId\":11065,\"journal\":{\"name\":\"Dental materials journal\",\"volume\":\" \",\"pages\":\"573-581\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental materials journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4012/dmj.2023-248\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2023-248","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Fabrication and histological evaluation of a self-setting granular cement using calcium sulfate hemihydrate granules with different pore distribution.
Granular type of bone substitutes is currently used in the field of dentistry to restore alveolar bone defects. However, the migration of the granules from the implantation site is still an unresolved issue. In this study, the feasibility to fabricate self-setting calcium sulfate hemihydrate (CSH) granules using different ranges of loading pressure: CSH(0), CSH(50), CSH(100), and CSH(150) was investigated with the hypothesis that CSH granules with reduced microporosity can inhibit the rapid dissolution rate of the calcium sulfate dihydrate (CSD) set blocks and induce bone regeneration. After 4 weeks of implantation, the granules were mostly replaced with new bone although no significant differences were observed. Nevertheless, the granules demonstrated the ability to set within the bone defect. It is therefore concluded that the setting ability of calcium sulfate can contribute to address the issue of migration of the granules and provide a useful guide for designing setting bone substitutes.
期刊介绍:
Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.