实体肿瘤微环境中的机制免疫学。

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Matteo Golo, Peter L H Newman, Daryan Kempe, Maté Biro
{"title":"实体肿瘤微环境中的机制免疫学。","authors":"Matteo Golo, Peter L H Newman, Daryan Kempe, Maté Biro","doi":"10.1042/BST20231427","DOIUrl":null,"url":null,"abstract":"<p><p>The tumor microenvironment (TME) is a complex and dynamic ecosystem that adjoins the cancer cells within solid tumors and comprises distinct components such as extracellular matrix, stromal and immune cells, blood vessels, and an abundance of signaling molecules. In recent years, the mechanical properties of the TME have emerged as critical determinants of tumor progression and therapeutic response. Aberrant mechanical cues, including altered tissue architecture and stiffness, contribute to tumor progression, metastasis, and resistance to treatment. Moreover, burgeoning immunotherapies hold great promise for harnessing the immune system to target and eliminate solid malignancies; however, their success is hindered by the hostile mechanical landscape of the TME, which can impede immune cell infiltration, function, and persistence. Consequently, understanding TME mechanoimmunology - the interplay between mechanical forces and immune cell behavior - is essential for developing effective solid cancer therapies. Here, we review the role of TME mechanics in tumor immunology, focusing on recent therapeutic interventions aimed at modulating the mechanical properties of the TME to potentiate T cell immunotherapies, and innovative assays tailored to evaluate their clinical efficacy.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanoimmunology in the solid tumor microenvironment.\",\"authors\":\"Matteo Golo, Peter L H Newman, Daryan Kempe, Maté Biro\",\"doi\":\"10.1042/BST20231427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The tumor microenvironment (TME) is a complex and dynamic ecosystem that adjoins the cancer cells within solid tumors and comprises distinct components such as extracellular matrix, stromal and immune cells, blood vessels, and an abundance of signaling molecules. In recent years, the mechanical properties of the TME have emerged as critical determinants of tumor progression and therapeutic response. Aberrant mechanical cues, including altered tissue architecture and stiffness, contribute to tumor progression, metastasis, and resistance to treatment. Moreover, burgeoning immunotherapies hold great promise for harnessing the immune system to target and eliminate solid malignancies; however, their success is hindered by the hostile mechanical landscape of the TME, which can impede immune cell infiltration, function, and persistence. Consequently, understanding TME mechanoimmunology - the interplay between mechanical forces and immune cell behavior - is essential for developing effective solid cancer therapies. Here, we review the role of TME mechanics in tumor immunology, focusing on recent therapeutic interventions aimed at modulating the mechanical properties of the TME to potentiate T cell immunotherapies, and innovative assays tailored to evaluate their clinical efficacy.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20231427\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20231427","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤微环境(TME)是一个复杂而动态的生态系统,它与实体瘤内的癌细胞相邻,由细胞外基质、基质和免疫细胞、血管以及大量信号分子等不同成分组成。近年来,TME 的机械特性已成为肿瘤进展和治疗反应的关键决定因素。异常的机械线索,包括组织结构和硬度的改变,会导致肿瘤的进展、转移和抗药性。此外,蓬勃发展的免疫疗法为利用免疫系统靶向消除实体恶性肿瘤带来了巨大希望;然而,它们的成功却受阻于 TME 充满敌意的机械结构,这可能会阻碍免疫细胞的浸润、功能和持久性。因此,了解TME机械免疫学--机械力与免疫细胞行为之间的相互作用--对于开发有效的实体肿瘤疗法至关重要。在此,我们回顾了TME力学在肿瘤免疫学中的作用,重点介绍了近期旨在调节TME力学特性以增强T细胞免疫疗法的治疗干预措施,以及为评估其临床疗效而量身定制的创新检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanoimmunology in the solid tumor microenvironment.

The tumor microenvironment (TME) is a complex and dynamic ecosystem that adjoins the cancer cells within solid tumors and comprises distinct components such as extracellular matrix, stromal and immune cells, blood vessels, and an abundance of signaling molecules. In recent years, the mechanical properties of the TME have emerged as critical determinants of tumor progression and therapeutic response. Aberrant mechanical cues, including altered tissue architecture and stiffness, contribute to tumor progression, metastasis, and resistance to treatment. Moreover, burgeoning immunotherapies hold great promise for harnessing the immune system to target and eliminate solid malignancies; however, their success is hindered by the hostile mechanical landscape of the TME, which can impede immune cell infiltration, function, and persistence. Consequently, understanding TME mechanoimmunology - the interplay between mechanical forces and immune cell behavior - is essential for developing effective solid cancer therapies. Here, we review the role of TME mechanics in tumor immunology, focusing on recent therapeutic interventions aimed at modulating the mechanical properties of the TME to potentiate T cell immunotherapies, and innovative assays tailored to evaluate their clinical efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信