半英寸单片空间异频拉曼光谱仪:有机液体偏振拉曼光谱和仪器性能研究。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Applied Spectroscopy Pub Date : 2024-10-01 Epub Date: 2024-06-10 DOI:10.1177/00037028241257961
Evan M Kelly, Miles J Egan, Arelis Colόn, S Michael Angel, Shiv K Sharma
{"title":"半英寸单片空间异频拉曼光谱仪:有机液体偏振拉曼光谱和仪器性能研究。","authors":"Evan M Kelly, Miles J Egan, Arelis Colόn, S Michael Angel, Shiv K Sharma","doi":"10.1177/00037028241257961","DOIUrl":null,"url":null,"abstract":"<p><p>Raman spectroscopy allows for the unambiguous identification of materials through the inelastic scattering of light. This technique has a great many uses in various aspects of society from academic, scientific, and industry. This paper explores a specific type of Raman spectrometer called a spatial heterodyne Raman spectrometer (SHRSy), which is a variation of an interferometric spectrometer. It utilizes a Michelson interferometer and replaces the mirrors with gratings that transform it from a time-domain spectrometer to a spatial-domain spectrometer, allowing for the entirety of the spectrum to be captured at once. This study specifically tests a half-inch two-grating monolithic SHRS (½-in. 2g-mSHRS), which has a weight of <60 g and a size of 2.2 × 2.2 × 1.3 cm. To do this we excite a variety of organic liquids with a 532 nm neodymium-doped yttrium aluminum garnet (Nd:YAG) pulsed laser, using an excitation energy of 6.5 mJ/pulse and distance of 3 m in conjunction with an intensified charge-coupled device camera. This is the first time that the SHRS has been used for investigating polarized Raman spectra of liquids. We discuss and contrast the instrumental properties such as resolution, spectral range, étendue, and field of view with previously tested mSHRS to give context to the instrument's performance.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Half-Inch Monolithic Spatial Heterodyne Raman Spectrometer: A Study of Polarized Raman Spectra of Organic Liquids and Instrumental Performance.\",\"authors\":\"Evan M Kelly, Miles J Egan, Arelis Colόn, S Michael Angel, Shiv K Sharma\",\"doi\":\"10.1177/00037028241257961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Raman spectroscopy allows for the unambiguous identification of materials through the inelastic scattering of light. This technique has a great many uses in various aspects of society from academic, scientific, and industry. This paper explores a specific type of Raman spectrometer called a spatial heterodyne Raman spectrometer (SHRSy), which is a variation of an interferometric spectrometer. It utilizes a Michelson interferometer and replaces the mirrors with gratings that transform it from a time-domain spectrometer to a spatial-domain spectrometer, allowing for the entirety of the spectrum to be captured at once. This study specifically tests a half-inch two-grating monolithic SHRS (½-in. 2g-mSHRS), which has a weight of <60 g and a size of 2.2 × 2.2 × 1.3 cm. To do this we excite a variety of organic liquids with a 532 nm neodymium-doped yttrium aluminum garnet (Nd:YAG) pulsed laser, using an excitation energy of 6.5 mJ/pulse and distance of 3 m in conjunction with an intensified charge-coupled device camera. This is the first time that the SHRS has been used for investigating polarized Raman spectra of liquids. We discuss and contrast the instrumental properties such as resolution, spectral range, étendue, and field of view with previously tested mSHRS to give context to the instrument's performance.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241257961\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241257961","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

拉曼光谱可以通过光的非弹性散射对材料进行明确识别。这项技术在社会的学术、科学和工业等各个方面都有广泛的用途。本文探讨了一种特定类型的拉曼光谱仪,称为空间外差拉曼光谱仪(SHRSy),它是干涉光谱仪的一种变体。它利用迈克尔逊干涉仪,用光栅取代反射镜,将其从时域光谱仪转变为空间域光谱仪,从而可以一次性捕捉整个光谱。这项研究专门测试了半英寸双光栅单片式 SHRS(½-in.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Half-Inch Monolithic Spatial Heterodyne Raman Spectrometer: A Study of Polarized Raman Spectra of Organic Liquids and Instrumental Performance.

Raman spectroscopy allows for the unambiguous identification of materials through the inelastic scattering of light. This technique has a great many uses in various aspects of society from academic, scientific, and industry. This paper explores a specific type of Raman spectrometer called a spatial heterodyne Raman spectrometer (SHRSy), which is a variation of an interferometric spectrometer. It utilizes a Michelson interferometer and replaces the mirrors with gratings that transform it from a time-domain spectrometer to a spatial-domain spectrometer, allowing for the entirety of the spectrum to be captured at once. This study specifically tests a half-inch two-grating monolithic SHRS (½-in. 2g-mSHRS), which has a weight of <60 g and a size of 2.2 × 2.2 × 1.3 cm. To do this we excite a variety of organic liquids with a 532 nm neodymium-doped yttrium aluminum garnet (Nd:YAG) pulsed laser, using an excitation energy of 6.5 mJ/pulse and distance of 3 m in conjunction with an intensified charge-coupled device camera. This is the first time that the SHRS has been used for investigating polarized Raman spectra of liquids. We discuss and contrast the instrumental properties such as resolution, spectral range, étendue, and field of view with previously tested mSHRS to give context to the instrument's performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信