Bárbara Poletto, Gabriel Gonçalves Silva, Ana Carolina Souza Ramos de Carvalho, Roberta Almeida Vincenzi, Eiji Yamassaki de Almeida, Douglas Galante, Amanda Gonçalves Bendia, Fabio Rodrigues
{"title":"从巴西佩鲁斯富铀矿物中分离出的微生物的抗紫外线能力","authors":"Bárbara Poletto, Gabriel Gonçalves Silva, Ana Carolina Souza Ramos de Carvalho, Roberta Almeida Vincenzi, Eiji Yamassaki de Almeida, Douglas Galante, Amanda Gonçalves Bendia, Fabio Rodrigues","doi":"10.1089/ast.2022.0125","DOIUrl":null,"url":null,"abstract":"<p><p>The district of Perus, located in the city of São Paulo, Brazil, is renowned for its weathered granitic-pegmatitic masses, which harbor a significant number of uraniferous minerals that contribute to ionizing radiation levels up to 20 times higher than the background levels. In this study, aseptically collected mineral samples from the area were utilized to isolate 15 microorganisms, which were subjected to pre-screening tests involving UV-C and UV-B radiation. The microorganisms that exhibited the highest resistance to ultraviolet (UV) radiation were selected for the construction of survival curves for UV-C, broad-band UV-B, and solar simulation resistance testing. Subsequently, the four strains that demonstrated superior survival capabilities under UV radiation exposure were chosen for 16S rRNA gene sequencing. Among these, <i>Nocardioides</i> sp. O4R and <i>Nocardioides</i> sp. MA2R demonstrated the most promising outcomes in the UV radiation resistance assessments, showcasing comparable performance to the well-established radioresistant model organism <i>Deinococcus radiodurans</i>. These findings underscore the potential of naturally occurring high-radiation environments as valuable resources for the investigation of UV-resistant microorganisms. Astrobiology 24, 783-794.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"783-794"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultraviolet Resistance of Microorganisms Isolated from Uranium-Rich Minerals from Perus, Brazil.\",\"authors\":\"Bárbara Poletto, Gabriel Gonçalves Silva, Ana Carolina Souza Ramos de Carvalho, Roberta Almeida Vincenzi, Eiji Yamassaki de Almeida, Douglas Galante, Amanda Gonçalves Bendia, Fabio Rodrigues\",\"doi\":\"10.1089/ast.2022.0125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The district of Perus, located in the city of São Paulo, Brazil, is renowned for its weathered granitic-pegmatitic masses, which harbor a significant number of uraniferous minerals that contribute to ionizing radiation levels up to 20 times higher than the background levels. In this study, aseptically collected mineral samples from the area were utilized to isolate 15 microorganisms, which were subjected to pre-screening tests involving UV-C and UV-B radiation. The microorganisms that exhibited the highest resistance to ultraviolet (UV) radiation were selected for the construction of survival curves for UV-C, broad-band UV-B, and solar simulation resistance testing. Subsequently, the four strains that demonstrated superior survival capabilities under UV radiation exposure were chosen for 16S rRNA gene sequencing. Among these, <i>Nocardioides</i> sp. O4R and <i>Nocardioides</i> sp. MA2R demonstrated the most promising outcomes in the UV radiation resistance assessments, showcasing comparable performance to the well-established radioresistant model organism <i>Deinococcus radiodurans</i>. These findings underscore the potential of naturally occurring high-radiation environments as valuable resources for the investigation of UV-resistant microorganisms. Astrobiology 24, 783-794.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\" \",\"pages\":\"783-794\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2022.0125\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2022.0125","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Ultraviolet Resistance of Microorganisms Isolated from Uranium-Rich Minerals from Perus, Brazil.
The district of Perus, located in the city of São Paulo, Brazil, is renowned for its weathered granitic-pegmatitic masses, which harbor a significant number of uraniferous minerals that contribute to ionizing radiation levels up to 20 times higher than the background levels. In this study, aseptically collected mineral samples from the area were utilized to isolate 15 microorganisms, which were subjected to pre-screening tests involving UV-C and UV-B radiation. The microorganisms that exhibited the highest resistance to ultraviolet (UV) radiation were selected for the construction of survival curves for UV-C, broad-band UV-B, and solar simulation resistance testing. Subsequently, the four strains that demonstrated superior survival capabilities under UV radiation exposure were chosen for 16S rRNA gene sequencing. Among these, Nocardioides sp. O4R and Nocardioides sp. MA2R demonstrated the most promising outcomes in the UV radiation resistance assessments, showcasing comparable performance to the well-established radioresistant model organism Deinococcus radiodurans. These findings underscore the potential of naturally occurring high-radiation environments as valuable resources for the investigation of UV-resistant microorganisms. Astrobiology 24, 783-794.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming