Shibani Bhattacharya, Kristen M. Varney, Tassadite Dahmane, Bruce A. Johnson, David J. Weber, Arthur G. Palmer III
{"title":"使用成对的 475 和 950 MHz NMR 光谱仪分析分馏氘化核糖核酸酶 H 的氘自旋弛豫。","authors":"Shibani Bhattacharya, Kristen M. Varney, Tassadite Dahmane, Bruce A. Johnson, David J. Weber, Arthur G. Palmer III","doi":"10.1007/s10858-024-00443-w","DOIUrl":null,"url":null,"abstract":"<div><p>Deuterium (<sup>2</sup>H) spin relaxation of <sup>13</sup>CH<sub>2</sub>D methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The <i>B</i><sub>0</sub> dependence of the <sup>2</sup>H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies <i>J</i>(0), <i>J</i>(<i>ω</i><sub>D</sub>) and <i>J</i>(2<i>ω</i><sub>D</sub>). In this study, the linear relation between <sup>2</sup>H relaxation rates at <i>B</i><sub>0</sub> fields separated by a factor of two and the interpolation of rates at intermediate frequencies are combined for a more robust approach for spectral density mapping. The general usefulness of the approach is demonstrated on a fractionally deuterated (55%) and alternate <sup>13</sup>C-<sup>12</sup>C labeled sample of <i>E. coli</i> RNase H. Deuterium relaxation rate constants (<i>R</i><sub>1</sub>, <i>R</i><sub>1<i>ρ</i></sub>, <i>R</i><sub><i>Q</i></sub>, <i>R</i><sub><i>AP</i></sub>) were measured for 57 well-resolved <sup>13</sup>CH<sub>2</sub>D moieties in RNase H at <sup>1</sup>H frequencies of 475 MHz, 500 MHz, 900 MHz, and 950 MHz. The spectral density mapping of the 475/950 MHz data combination was performed independently and jointly to validate the expected relationship between data recorded at <i>B</i><sub>0</sub> fields separated by a factor of two. The final analysis was performed by jointly analyzing 475/950 MHz rates with 700 MHz rates interpolated from 500/900 MHz data to yield six <i>J</i>(<i>ω</i><sub>D</sub>) values for each methyl peak. The <i>J</i>(<i>ω</i>) profile for each peak was fit to the original (<i>τ</i><sub><i>M</i></sub>, <i>S</i><sub><i>f</i></sub><sup>2</sup>, <i>τ</i><sub><i>f</i></sub>) or extended model-free function (<i>τ</i><sub><i>M</i></sub>, <i>S</i><sub><i>f</i></sub><sup>2</sup>, <i>S</i><sub><i>s</i></sub><sup>2</sup>, <i>τ</i><sub><i>f</i></sub>, <i>τ</i><sub><i>s</i></sub>) to obtain optimized dynamic parameters.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"78 3","pages":"169 - 177"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950 MHz NMR spectrometers\",\"authors\":\"Shibani Bhattacharya, Kristen M. Varney, Tassadite Dahmane, Bruce A. Johnson, David J. Weber, Arthur G. Palmer III\",\"doi\":\"10.1007/s10858-024-00443-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deuterium (<sup>2</sup>H) spin relaxation of <sup>13</sup>CH<sub>2</sub>D methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The <i>B</i><sub>0</sub> dependence of the <sup>2</sup>H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies <i>J</i>(0), <i>J</i>(<i>ω</i><sub>D</sub>) and <i>J</i>(2<i>ω</i><sub>D</sub>). In this study, the linear relation between <sup>2</sup>H relaxation rates at <i>B</i><sub>0</sub> fields separated by a factor of two and the interpolation of rates at intermediate frequencies are combined for a more robust approach for spectral density mapping. The general usefulness of the approach is demonstrated on a fractionally deuterated (55%) and alternate <sup>13</sup>C-<sup>12</sup>C labeled sample of <i>E. coli</i> RNase H. Deuterium relaxation rate constants (<i>R</i><sub>1</sub>, <i>R</i><sub>1<i>ρ</i></sub>, <i>R</i><sub><i>Q</i></sub>, <i>R</i><sub><i>AP</i></sub>) were measured for 57 well-resolved <sup>13</sup>CH<sub>2</sub>D moieties in RNase H at <sup>1</sup>H frequencies of 475 MHz, 500 MHz, 900 MHz, and 950 MHz. The spectral density mapping of the 475/950 MHz data combination was performed independently and jointly to validate the expected relationship between data recorded at <i>B</i><sub>0</sub> fields separated by a factor of two. The final analysis was performed by jointly analyzing 475/950 MHz rates with 700 MHz rates interpolated from 500/900 MHz data to yield six <i>J</i>(<i>ω</i><sub>D</sub>) values for each methyl peak. The <i>J</i>(<i>ω</i>) profile for each peak was fit to the original (<i>τ</i><sub><i>M</i></sub>, <i>S</i><sub><i>f</i></sub><sup>2</sup>, <i>τ</i><sub><i>f</i></sub>) or extended model-free function (<i>τ</i><sub><i>M</i></sub>, <i>S</i><sub><i>f</i></sub><sup>2</sup>, <i>S</i><sub><i>s</i></sub><sup>2</sup>, <i>τ</i><sub><i>f</i></sub>, <i>τ</i><sub><i>s</i></sub>) to obtain optimized dynamic parameters.</p></div>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":\"78 3\",\"pages\":\"169 - 177\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-024-00443-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-024-00443-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950 MHz NMR spectrometers
Deuterium (2H) spin relaxation of 13CH2D methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The B0 dependence of the 2H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies J(0), J(ωD) and J(2ωD). In this study, the linear relation between 2H relaxation rates at B0 fields separated by a factor of two and the interpolation of rates at intermediate frequencies are combined for a more robust approach for spectral density mapping. The general usefulness of the approach is demonstrated on a fractionally deuterated (55%) and alternate 13C-12C labeled sample of E. coli RNase H. Deuterium relaxation rate constants (R1, R1ρ, RQ, RAP) were measured for 57 well-resolved 13CH2D moieties in RNase H at 1H frequencies of 475 MHz, 500 MHz, 900 MHz, and 950 MHz. The spectral density mapping of the 475/950 MHz data combination was performed independently and jointly to validate the expected relationship between data recorded at B0 fields separated by a factor of two. The final analysis was performed by jointly analyzing 475/950 MHz rates with 700 MHz rates interpolated from 500/900 MHz data to yield six J(ωD) values for each methyl peak. The J(ω) profile for each peak was fit to the original (τM, Sf2, τf) or extended model-free function (τM, Sf2, Ss2, τf, τs) to obtain optimized dynamic parameters.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.