Sunirmala Sahoo, Nitin Dhaka, Sulakshana P. Mukherjee
{"title":"NF-kappaB p52 亚基二聚化结构域的骨架三重共振分配。","authors":"Sunirmala Sahoo, Nitin Dhaka, Sulakshana P. Mukherjee","doi":"10.1007/s12104-024-10179-1","DOIUrl":null,"url":null,"abstract":"<div><p>NF-kappaB is a family of inducible transcription factors playing an important role in immune response in vertebrates. All the five members of the family function as dimers in various combinations. Though all the family members recognize and bind to similar DNA elements to regulate the transcription of its target genes, the dimer composition can lead to differential transcriptional outcomes. Here we report the backbone resonance assignment of the 24.2 kDa homodimer of p52 subunit of the NF-kB family. The p52 subunit of NF-kB is a crucial player in the non-canonical NF-kB pathway and its dysregulation has shown detrimental effects in immune response leading to various inflammatory diseases and cancers. While the β-strands predicted using the backbone chemical shifts in this study largely conform with the available crystal structure, the helical turns present in the crystal structure are not observed in our results.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"135 - 138"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backbone triple resonance assignments of the dimerization domain of NF-kappaB p52 subunit\",\"authors\":\"Sunirmala Sahoo, Nitin Dhaka, Sulakshana P. Mukherjee\",\"doi\":\"10.1007/s12104-024-10179-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>NF-kappaB is a family of inducible transcription factors playing an important role in immune response in vertebrates. All the five members of the family function as dimers in various combinations. Though all the family members recognize and bind to similar DNA elements to regulate the transcription of its target genes, the dimer composition can lead to differential transcriptional outcomes. Here we report the backbone resonance assignment of the 24.2 kDa homodimer of p52 subunit of the NF-kB family. The p52 subunit of NF-kB is a crucial player in the non-canonical NF-kB pathway and its dysregulation has shown detrimental effects in immune response leading to various inflammatory diseases and cancers. While the β-strands predicted using the backbone chemical shifts in this study largely conform with the available crystal structure, the helical turns present in the crystal structure are not observed in our results.</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\"18 2\",\"pages\":\"135 - 138\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-024-10179-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10179-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Backbone triple resonance assignments of the dimerization domain of NF-kappaB p52 subunit
NF-kappaB is a family of inducible transcription factors playing an important role in immune response in vertebrates. All the five members of the family function as dimers in various combinations. Though all the family members recognize and bind to similar DNA elements to regulate the transcription of its target genes, the dimer composition can lead to differential transcriptional outcomes. Here we report the backbone resonance assignment of the 24.2 kDa homodimer of p52 subunit of the NF-kB family. The p52 subunit of NF-kB is a crucial player in the non-canonical NF-kB pathway and its dysregulation has shown detrimental effects in immune response leading to various inflammatory diseases and cancers. While the β-strands predicted using the backbone chemical shifts in this study largely conform with the available crystal structure, the helical turns present in the crystal structure are not observed in our results.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.