{"title":"统一功能生态学和种群生态学,测试性状的适应价值。","authors":"Daniel C. Laughlin","doi":"10.1111/brv.13107","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Plant strategies are phenotypes shaped by natural selection that enable populations to persist in a given environment. Plant strategy theory is essential for understanding the assembly of plant communities, predicting plant responses to climate change, and enhancing the restoration of our degrading biosphere. However, models of plant strategies vary widely and have tended to emphasize either functional traits or life-history traits at the expense of integrating both into a general framework to improve our ecological and evolutionary understanding of plant form and function. Advancing our understanding of plant strategies will require investment in two complementary research agendas that together will unify functional ecology and population ecology. First, we must determine what is phenotypically possible by quantifying the dimensionality of plant traits. This step requires dense taxonomic sampling of traits on species representing the broad diversity of phylogenetic clades, environmental gradients, and geographical regions found across Earth. It is important that we continue to sample traits locally and share data globally to fill biased gaps in trait databases. Second, we must test the power of traits for explaining species distributions, demographic rates, and population growth rates across gradients of resource limitation, disturbance regimes, temperature, vegetation density, and frequencies of other strategies. This step requires thoughtful, theory-driven empiricism. Reciprocal transplant experiments beyond the native range and synthetic demographic modelling are the most powerful methods to determine how trait-by-environment interactions influence fitness. Moving beyond easy-to-measure traits and evaluating the traits that are under the strongest ecological selection within different environmental contexts will improve our understanding of plant adaptations. Plant strategy theory is poised to (<i>i</i>) unpack the multiple dimensions of productivity and disturbance gradients and differentiate adaptations to climate and resource limitation from adaptations to disturbance, (<i>ii</i>) distinguish between the fundamental and realized niches of phenotypes, and (<i>iii</i>) articulate the distinctions and relationships between functional traits and life-history traits.</p>\n </div>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"1976-1991"},"PeriodicalIF":11.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unifying functional and population ecology to test the adaptive value of traits\",\"authors\":\"Daniel C. Laughlin\",\"doi\":\"10.1111/brv.13107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Plant strategies are phenotypes shaped by natural selection that enable populations to persist in a given environment. Plant strategy theory is essential for understanding the assembly of plant communities, predicting plant responses to climate change, and enhancing the restoration of our degrading biosphere. However, models of plant strategies vary widely and have tended to emphasize either functional traits or life-history traits at the expense of integrating both into a general framework to improve our ecological and evolutionary understanding of plant form and function. Advancing our understanding of plant strategies will require investment in two complementary research agendas that together will unify functional ecology and population ecology. First, we must determine what is phenotypically possible by quantifying the dimensionality of plant traits. This step requires dense taxonomic sampling of traits on species representing the broad diversity of phylogenetic clades, environmental gradients, and geographical regions found across Earth. It is important that we continue to sample traits locally and share data globally to fill biased gaps in trait databases. Second, we must test the power of traits for explaining species distributions, demographic rates, and population growth rates across gradients of resource limitation, disturbance regimes, temperature, vegetation density, and frequencies of other strategies. This step requires thoughtful, theory-driven empiricism. Reciprocal transplant experiments beyond the native range and synthetic demographic modelling are the most powerful methods to determine how trait-by-environment interactions influence fitness. Moving beyond easy-to-measure traits and evaluating the traits that are under the strongest ecological selection within different environmental contexts will improve our understanding of plant adaptations. Plant strategy theory is poised to (<i>i</i>) unpack the multiple dimensions of productivity and disturbance gradients and differentiate adaptations to climate and resource limitation from adaptations to disturbance, (<i>ii</i>) distinguish between the fundamental and realized niches of phenotypes, and (<i>iii</i>) articulate the distinctions and relationships between functional traits and life-history traits.</p>\\n </div>\",\"PeriodicalId\":133,\"journal\":{\"name\":\"Biological Reviews\",\"volume\":\"99 6\",\"pages\":\"1976-1991\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/brv.13107\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/brv.13107","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Unifying functional and population ecology to test the adaptive value of traits
Plant strategies are phenotypes shaped by natural selection that enable populations to persist in a given environment. Plant strategy theory is essential for understanding the assembly of plant communities, predicting plant responses to climate change, and enhancing the restoration of our degrading biosphere. However, models of plant strategies vary widely and have tended to emphasize either functional traits or life-history traits at the expense of integrating both into a general framework to improve our ecological and evolutionary understanding of plant form and function. Advancing our understanding of plant strategies will require investment in two complementary research agendas that together will unify functional ecology and population ecology. First, we must determine what is phenotypically possible by quantifying the dimensionality of plant traits. This step requires dense taxonomic sampling of traits on species representing the broad diversity of phylogenetic clades, environmental gradients, and geographical regions found across Earth. It is important that we continue to sample traits locally and share data globally to fill biased gaps in trait databases. Second, we must test the power of traits for explaining species distributions, demographic rates, and population growth rates across gradients of resource limitation, disturbance regimes, temperature, vegetation density, and frequencies of other strategies. This step requires thoughtful, theory-driven empiricism. Reciprocal transplant experiments beyond the native range and synthetic demographic modelling are the most powerful methods to determine how trait-by-environment interactions influence fitness. Moving beyond easy-to-measure traits and evaluating the traits that are under the strongest ecological selection within different environmental contexts will improve our understanding of plant adaptations. Plant strategy theory is poised to (i) unpack the multiple dimensions of productivity and disturbance gradients and differentiate adaptations to climate and resource limitation from adaptations to disturbance, (ii) distinguish between the fundamental and realized niches of phenotypes, and (iii) articulate the distinctions and relationships between functional traits and life-history traits.
期刊介绍:
Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly.
The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions.
The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field.
Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.