在原型可果美超导体 La(Ru1-xFex)3Si2 中发现高于室温的电荷阶数

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
I. Plokhikh, C. Mielke III, H. Nakamura, V. Petricek, Y. Qin, V. Sazgari, J. Küspert, I. Biało, S. Shin, O. Ivashko, J. N. Graham, M. v. Zimmermann, M. Medarde, A. Amato, R. Khasanov, H. Luetkens, M. H. Fischer, M. Z. Hasan, J.-X. Yin, T. Neupert, J. Chang, G. Xu, S. Nakatsuji, E. Pomjakushina, D. J. Gawryluk, Z. Guguchia
{"title":"在原型可果美超导体 La(Ru1-xFex)3Si2 中发现高于室温的电荷阶数","authors":"I. Plokhikh, C. Mielke III, H. Nakamura, V. Petricek, Y. Qin, V. Sazgari, J. Küspert, I. Biało, S. Shin, O. Ivashko, J. N. Graham, M. v. Zimmermann, M. Medarde, A. Amato, R. Khasanov, H. Luetkens, M. H. Fischer, M. Z. Hasan, J.-X. Yin, T. Neupert, J. Chang, G. Xu, S. Nakatsuji, E. Pomjakushina, D. J. Gawryluk, Z. Guguchia","doi":"10.1038/s42005-024-01673-y","DOIUrl":null,"url":null,"abstract":"The kagome lattice is an intriguing and rich platform for discovering, tuning and understanding the diverse phases of quantum matter, crucial for advancing modern and future electronics. Despite considerable efforts, accessing correlated phases at room temperature has been challenging. Using single-crystal X-ray diffraction, we discovered charge order above room temperature in La(Ru1−xFex)3Si2 (x = 0, 0.01, 0.05), where charge order related to out-of-plane Ru atom displacements appears below TCO,I  ≃ 400 K. The secondary charge ordered phase emerges below TCO,II  ≃ 80–170 K. Furthermore, first principles calculations reveal both the kagome flat band and the van Hove point near the Fermi energy in LaRu3Si2, driven by Ru-dz2 orbitals. Our results identify LaRu3Si2 as the kagome superconductor with the highest known charge ordering temperature, offering a promising avenue for researching room temperature quantum phases and developing related technologies. The study focuses on the charge order in LaRu3Si2, a material with a kagome lattice structure, discovering a charge-ordered state that persists at or above room temperature. This finding classifies LaRu3Si2 as the kagome superconductor with the highest charge ordering temperature, suggesting potential for applications in devices operating at normal environmental conditions without the need for cooling.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01673-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Discovery of charge order above room-temperature in the prototypical kagome superconductor La(Ru1−xFex)3Si2\",\"authors\":\"I. Plokhikh, C. Mielke III, H. Nakamura, V. Petricek, Y. Qin, V. Sazgari, J. Küspert, I. Biało, S. Shin, O. Ivashko, J. N. Graham, M. v. Zimmermann, M. Medarde, A. Amato, R. Khasanov, H. Luetkens, M. H. Fischer, M. Z. Hasan, J.-X. Yin, T. Neupert, J. Chang, G. Xu, S. Nakatsuji, E. Pomjakushina, D. J. Gawryluk, Z. Guguchia\",\"doi\":\"10.1038/s42005-024-01673-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kagome lattice is an intriguing and rich platform for discovering, tuning and understanding the diverse phases of quantum matter, crucial for advancing modern and future electronics. Despite considerable efforts, accessing correlated phases at room temperature has been challenging. Using single-crystal X-ray diffraction, we discovered charge order above room temperature in La(Ru1−xFex)3Si2 (x = 0, 0.01, 0.05), where charge order related to out-of-plane Ru atom displacements appears below TCO,I  ≃ 400 K. The secondary charge ordered phase emerges below TCO,II  ≃ 80–170 K. Furthermore, first principles calculations reveal both the kagome flat band and the van Hove point near the Fermi energy in LaRu3Si2, driven by Ru-dz2 orbitals. Our results identify LaRu3Si2 as the kagome superconductor with the highest known charge ordering temperature, offering a promising avenue for researching room temperature quantum phases and developing related technologies. The study focuses on the charge order in LaRu3Si2, a material with a kagome lattice structure, discovering a charge-ordered state that persists at or above room temperature. This finding classifies LaRu3Si2 as the kagome superconductor with the highest charge ordering temperature, suggesting potential for applications in devices operating at normal environmental conditions without the need for cooling.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01673-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01673-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01673-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卡戈米晶格是发现、调整和理解量子物质各种相位的一个有趣而丰富的平台,对于推动现代和未来电子学的发展至关重要。尽管做出了大量努力,但在室温下获得相关相位一直是个挑战。利用单晶 X 射线衍射,我们在 La(Ru1-xFex)3Si2 (x = 0, 0.01, 0.05) 中发现了高于室温的电荷有序,其中与面外 Ru 原子位移相关的电荷有序出现在 TCO,I ≃ 400 K 以下。此外,第一性原理计算还揭示了 LaRu3Si2 在 Ru-dz2 轨道的驱动下,在费米能附近出现的 kagome 平带和 van Hove 点。我们的研究结果表明,LaRu3Si2 是已知电荷有序温度最高的卡戈米超导体,为室温量子相的研究和相关技术的开发提供了一个前景广阔的途径。这项研究的重点是具有卡戈米晶格结构的材料 LaRu3Si2 中的电荷有序性,发现了一种在室温或室温以上持续存在的电荷有序状态。这一发现将 LaRu3Si2 归类为电荷有序温度最高的 kagome superconductor 材料,表明它有望应用于无需冷却即可在正常环境条件下运行的设备中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discovery of charge order above room-temperature in the prototypical kagome superconductor La(Ru1−xFex)3Si2

Discovery of charge order above room-temperature in the prototypical kagome superconductor La(Ru1−xFex)3Si2
The kagome lattice is an intriguing and rich platform for discovering, tuning and understanding the diverse phases of quantum matter, crucial for advancing modern and future electronics. Despite considerable efforts, accessing correlated phases at room temperature has been challenging. Using single-crystal X-ray diffraction, we discovered charge order above room temperature in La(Ru1−xFex)3Si2 (x = 0, 0.01, 0.05), where charge order related to out-of-plane Ru atom displacements appears below TCO,I  ≃ 400 K. The secondary charge ordered phase emerges below TCO,II  ≃ 80–170 K. Furthermore, first principles calculations reveal both the kagome flat band and the van Hove point near the Fermi energy in LaRu3Si2, driven by Ru-dz2 orbitals. Our results identify LaRu3Si2 as the kagome superconductor with the highest known charge ordering temperature, offering a promising avenue for researching room temperature quantum phases and developing related technologies. The study focuses on the charge order in LaRu3Si2, a material with a kagome lattice structure, discovering a charge-ordered state that persists at or above room temperature. This finding classifies LaRu3Si2 as the kagome superconductor with the highest charge ordering temperature, suggesting potential for applications in devices operating at normal environmental conditions without the need for cooling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信