探测生命系统中金属酶的动态:荧光成像工具和应用的当代进展

IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sky Price, Emily L. Que
{"title":"探测生命系统中金属酶的动态:荧光成像工具和应用的当代进展","authors":"Sky Price,&nbsp;Emily L. Que","doi":"10.1016/j.cbpa.2024.102475","DOIUrl":null,"url":null,"abstract":"<div><p>Metalloenzymes are essential to cellular function, and their overexpression or enhanced activation are potential therapeutic targets. However, the study of metalloenzymes <em>in vitro</em> presents various challenges, leading many to develop tools to study them in their native cellular environment. Small-molecule fluorescence probes are commonly used to monitor metalloenzyme function, activity, and distribution <em>in situ</em>. These include probes that are activity-based (fluorescence is mediated by enzyme activity) or binding-based (fluorescence is mediated by interactions with the enzyme upon binding its metal cofactor). We discuss recent innovations that overcome key design challenges, such as the rapid diffusion of activity-based probes, the difficulty of probing redox-active enzymes, the selectivity of binding-based probes, and the poor penetration depth of fluorescence, and describe novel applications of these tools.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102475"},"PeriodicalIF":6.9000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing metalloenzyme dynamics in living systems: Contemporary advances in fluorescence imaging tools and applications\",\"authors\":\"Sky Price,&nbsp;Emily L. Que\",\"doi\":\"10.1016/j.cbpa.2024.102475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metalloenzymes are essential to cellular function, and their overexpression or enhanced activation are potential therapeutic targets. However, the study of metalloenzymes <em>in vitro</em> presents various challenges, leading many to develop tools to study them in their native cellular environment. Small-molecule fluorescence probes are commonly used to monitor metalloenzyme function, activity, and distribution <em>in situ</em>. These include probes that are activity-based (fluorescence is mediated by enzyme activity) or binding-based (fluorescence is mediated by interactions with the enzyme upon binding its metal cofactor). We discuss recent innovations that overcome key design challenges, such as the rapid diffusion of activity-based probes, the difficulty of probing redox-active enzymes, the selectivity of binding-based probes, and the poor penetration depth of fluorescence, and describe novel applications of these tools.</p></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"81 \",\"pages\":\"Article 102475\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000516\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000516","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金属酶对细胞功能至关重要,它们的过度表达或活化增强是潜在的治疗目标。然而,体外研究金属酶面临着各种挑战,因此许多人开发了在原生细胞环境中研究金属酶的工具。小分子荧光探针常用于原位监测金属酶的功能、活性和分布。这些探针包括基于活性的探针(荧光由酶的活性介导)或基于结合的探针(荧光由金属辅助因子结合后与酶的相互作用介导)。我们讨论了克服关键设计挑战的最新创新,例如基于活性的探针的快速扩散、探测氧化还原活性酶的困难、基于结合的探针的选择性以及荧光的穿透深度差,并介绍了这些工具的新型应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probing metalloenzyme dynamics in living systems: Contemporary advances in fluorescence imaging tools and applications

Probing metalloenzyme dynamics in living systems: Contemporary advances in fluorescence imaging tools and applications

Metalloenzymes are essential to cellular function, and their overexpression or enhanced activation are potential therapeutic targets. However, the study of metalloenzymes in vitro presents various challenges, leading many to develop tools to study them in their native cellular environment. Small-molecule fluorescence probes are commonly used to monitor metalloenzyme function, activity, and distribution in situ. These include probes that are activity-based (fluorescence is mediated by enzyme activity) or binding-based (fluorescence is mediated by interactions with the enzyme upon binding its metal cofactor). We discuss recent innovations that overcome key design challenges, such as the rapid diffusion of activity-based probes, the difficulty of probing redox-active enzymes, the selectivity of binding-based probes, and the poor penetration depth of fluorescence, and describe novel applications of these tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Biology
Current Opinion in Chemical Biology 生物-生化与分子生物学
CiteScore
13.30
自引率
1.30%
发文量
113
审稿时长
74 days
期刊介绍: COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信