{"title":"模拟非人类宿主捕食对南美锥虫病传播的影响。","authors":"Xuan Dai , Xiaotian Wu , Jiao Jiang , Libin Rong","doi":"10.1016/j.mbs.2024.109230","DOIUrl":null,"url":null,"abstract":"<div><p>In addition to the traditional transmission route via the biting-and-defecating process, non-human host predation of triatomines is recognized as another significant avenue for Chagas disease transmission. In this paper, we develop an eco-epidemiological model to investigate the impact of predation on the disease’s spread. Two critical thresholds, <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> (the basic reproduction number of triatomines) and <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> (the basic reproduction number of the Chagas parasite), are derived to delineate the model’s dynamics. Through the construction of appropriate Lyapunov functions and the application of the Bendixson–Dulac theorem, the global asymptotic stabilities of the equilibria are fully established. The vector-free equilibrium <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is globally stable when <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo><</mo><mn>1</mn></mrow></math></span>. <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, the disease-free equilibrium, is globally stable when <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo><</mo><mn>1</mn></mrow></math></span>, while the endemic equilibrium <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is globally stable when both <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span>. Numerical simulations highlight that the degree of host predation on triatomines, influenced by non-human hosts activities, can variably increase or decrease the Chagas disease transmission risk. Specifically, low or high levels of host predation can reduce <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> to below unity, while intermediate levels may increase the infected host populations, albeit with a reduction in <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>. These findings highlight the role played by non-human hosts and offer crucial insights for the prevention and control of Chagas disease.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"374 ","pages":"Article 109230"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the impact of non-human host predation on the transmission of Chagas disease\",\"authors\":\"Xuan Dai , Xiaotian Wu , Jiao Jiang , Libin Rong\",\"doi\":\"10.1016/j.mbs.2024.109230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In addition to the traditional transmission route via the biting-and-defecating process, non-human host predation of triatomines is recognized as another significant avenue for Chagas disease transmission. In this paper, we develop an eco-epidemiological model to investigate the impact of predation on the disease’s spread. Two critical thresholds, <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> (the basic reproduction number of triatomines) and <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> (the basic reproduction number of the Chagas parasite), are derived to delineate the model’s dynamics. Through the construction of appropriate Lyapunov functions and the application of the Bendixson–Dulac theorem, the global asymptotic stabilities of the equilibria are fully established. The vector-free equilibrium <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is globally stable when <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo><</mo><mn>1</mn></mrow></math></span>. <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, the disease-free equilibrium, is globally stable when <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo><</mo><mn>1</mn></mrow></math></span>, while the endemic equilibrium <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is globally stable when both <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span>. Numerical simulations highlight that the degree of host predation on triatomines, influenced by non-human hosts activities, can variably increase or decrease the Chagas disease transmission risk. Specifically, low or high levels of host predation can reduce <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> to below unity, while intermediate levels may increase the infected host populations, albeit with a reduction in <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>. These findings highlight the role played by non-human hosts and offer crucial insights for the prevention and control of Chagas disease.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"374 \",\"pages\":\"Article 109230\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424000907\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000907","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Modeling the impact of non-human host predation on the transmission of Chagas disease
In addition to the traditional transmission route via the biting-and-defecating process, non-human host predation of triatomines is recognized as another significant avenue for Chagas disease transmission. In this paper, we develop an eco-epidemiological model to investigate the impact of predation on the disease’s spread. Two critical thresholds, (the basic reproduction number of triatomines) and (the basic reproduction number of the Chagas parasite), are derived to delineate the model’s dynamics. Through the construction of appropriate Lyapunov functions and the application of the Bendixson–Dulac theorem, the global asymptotic stabilities of the equilibria are fully established. The vector-free equilibrium is globally stable when . , the disease-free equilibrium, is globally stable when and , while the endemic equilibrium is globally stable when both and . Numerical simulations highlight that the degree of host predation on triatomines, influenced by non-human hosts activities, can variably increase or decrease the Chagas disease transmission risk. Specifically, low or high levels of host predation can reduce to below unity, while intermediate levels may increase the infected host populations, albeit with a reduction in . These findings highlight the role played by non-human hosts and offer crucial insights for the prevention and control of Chagas disease.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.