Geoffrey M Currie, K Elizabeth Hawk, Eric M Rohren
{"title":"生成式人工智能在核医学中的偏差、局限性和风险:核医学中的偏见、局限性和风险:适当使用框架和建议论证》。","authors":"Geoffrey M Currie, K Elizabeth Hawk, Eric M Rohren","doi":"10.1053/j.semnuclmed.2024.05.005","DOIUrl":null,"url":null,"abstract":"<p><p>Generative artificial intelligence (AI) algorithms for both text-to-text and text-to-image applications have seen rapid and widespread adoption in the general and medical communities. While limitations of generative AI have been widely reported, there remain valuable applications in patient and professional communities. Here, the limitations and biases of both text-to-text and text-to-image generative AI are explored using purported applications in medical imaging as case examples. A direct comparison of the capabilities of four common text-to-image generative AI algorithms is reported and recommendations for the most appropriate use, DALL-E 3, justified. The risks use and biases are outlined, and appropriate use guidelines framed for use of generative AI in nuclear medicine. Generative AI text-to-text and text-to-image generation includes inherent biases, particularly gender and ethnicity, that could misrepresent nuclear medicine. The assimilation of generative AI tools into medical education, image interpretation, patient education, health promotion and marketing in nuclear medicine risks propagating errors and amplification of biases. Mitigation strategies should reside inside appropriate use criteria and minimum standards for quality and professionalism for the application of generative AI in nuclear medicine.</p>","PeriodicalId":21643,"journal":{"name":"Seminars in nuclear medicine","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Artificial Intelligence Biases, Limitations and Risks in Nuclear Medicine: An Argument for Appropriate Use Framework and Recommendations.\",\"authors\":\"Geoffrey M Currie, K Elizabeth Hawk, Eric M Rohren\",\"doi\":\"10.1053/j.semnuclmed.2024.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Generative artificial intelligence (AI) algorithms for both text-to-text and text-to-image applications have seen rapid and widespread adoption in the general and medical communities. While limitations of generative AI have been widely reported, there remain valuable applications in patient and professional communities. Here, the limitations and biases of both text-to-text and text-to-image generative AI are explored using purported applications in medical imaging as case examples. A direct comparison of the capabilities of four common text-to-image generative AI algorithms is reported and recommendations for the most appropriate use, DALL-E 3, justified. The risks use and biases are outlined, and appropriate use guidelines framed for use of generative AI in nuclear medicine. Generative AI text-to-text and text-to-image generation includes inherent biases, particularly gender and ethnicity, that could misrepresent nuclear medicine. The assimilation of generative AI tools into medical education, image interpretation, patient education, health promotion and marketing in nuclear medicine risks propagating errors and amplification of biases. Mitigation strategies should reside inside appropriate use criteria and minimum standards for quality and professionalism for the application of generative AI in nuclear medicine.</p>\",\"PeriodicalId\":21643,\"journal\":{\"name\":\"Seminars in nuclear medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in nuclear medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1053/j.semnuclmed.2024.05.005\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in nuclear medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.semnuclmed.2024.05.005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Generative Artificial Intelligence Biases, Limitations and Risks in Nuclear Medicine: An Argument for Appropriate Use Framework and Recommendations.
Generative artificial intelligence (AI) algorithms for both text-to-text and text-to-image applications have seen rapid and widespread adoption in the general and medical communities. While limitations of generative AI have been widely reported, there remain valuable applications in patient and professional communities. Here, the limitations and biases of both text-to-text and text-to-image generative AI are explored using purported applications in medical imaging as case examples. A direct comparison of the capabilities of four common text-to-image generative AI algorithms is reported and recommendations for the most appropriate use, DALL-E 3, justified. The risks use and biases are outlined, and appropriate use guidelines framed for use of generative AI in nuclear medicine. Generative AI text-to-text and text-to-image generation includes inherent biases, particularly gender and ethnicity, that could misrepresent nuclear medicine. The assimilation of generative AI tools into medical education, image interpretation, patient education, health promotion and marketing in nuclear medicine risks propagating errors and amplification of biases. Mitigation strategies should reside inside appropriate use criteria and minimum standards for quality and professionalism for the application of generative AI in nuclear medicine.
期刊介绍:
Seminars in Nuclear Medicine is the leading review journal in nuclear medicine. Each issue brings you expert reviews and commentary on a single topic as selected by the Editors. The journal contains extensive coverage of the field of nuclear medicine, including PET, SPECT, and other molecular imaging studies, and related imaging studies. Full-color illustrations are used throughout to highlight important findings. Seminars is included in PubMed/Medline, Thomson/ISI, and other major scientific indexes.