Constantine Kapetanakis, Samantha Conflitti, Sarah Abdo, L. Kate Wright, Dina L. Newman
{"title":"构建类比:通过协作任务发展批判性思维","authors":"Constantine Kapetanakis, Samantha Conflitti, Sarah Abdo, L. Kate Wright, Dina L. Newman","doi":"10.1002/bmb.21843","DOIUrl":null,"url":null,"abstract":"<p>Analogies are used to make abstract topics meaningful and more easily comprehensible to learners. Incorporating simple analogies into STEM classrooms is a fairly common practice, but the analogies are typically generated and explained by the instructor for the learners. We hypothesize that challenging learners to create complex, extended analogies themselves can promote integration of content knowledge and development of critical thinking skills, which are essential for deep learning, but are challenging to teach. In this qualitative study, college biology students (<i>n</i> = 30) were asked to construct a complex analogy about the flow of genetic information using a familiar item. One week later, participants constructed a second analogy about the same topic, but this time using a more challenging item. Twenty participants worked on the challenging analogy in pairs, while the other 10 worked alone. Analysis of the 50 interviews resulted in a novel-scoring scheme, which measured both content knowledge (understanding of biology terms) and critical thinking (alignment of relationships between elements of the analogy). Most participants improved slightly due to practice, but they improved dramatically when working with a partner. The biggest gains were seen in critical thinking, not content knowledge. Having students construct complex, sophisticated analogies in pairs is a high-impact practice that can help students develop their critical thinking skills, which are crucial in academic and professional settings. The discussion between partners likely requires students to justify their explanations and critique their partner's explanations, which are characteristics of critical thinking.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 5","pages":"569-579"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.21843","citationCount":"0","resultStr":"{\"title\":\"Constructing analogies: Developing critical thinking through a collaborative task\",\"authors\":\"Constantine Kapetanakis, Samantha Conflitti, Sarah Abdo, L. Kate Wright, Dina L. Newman\",\"doi\":\"10.1002/bmb.21843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Analogies are used to make abstract topics meaningful and more easily comprehensible to learners. Incorporating simple analogies into STEM classrooms is a fairly common practice, but the analogies are typically generated and explained by the instructor for the learners. We hypothesize that challenging learners to create complex, extended analogies themselves can promote integration of content knowledge and development of critical thinking skills, which are essential for deep learning, but are challenging to teach. In this qualitative study, college biology students (<i>n</i> = 30) were asked to construct a complex analogy about the flow of genetic information using a familiar item. One week later, participants constructed a second analogy about the same topic, but this time using a more challenging item. Twenty participants worked on the challenging analogy in pairs, while the other 10 worked alone. Analysis of the 50 interviews resulted in a novel-scoring scheme, which measured both content knowledge (understanding of biology terms) and critical thinking (alignment of relationships between elements of the analogy). Most participants improved slightly due to practice, but they improved dramatically when working with a partner. The biggest gains were seen in critical thinking, not content knowledge. Having students construct complex, sophisticated analogies in pairs is a high-impact practice that can help students develop their critical thinking skills, which are crucial in academic and professional settings. The discussion between partners likely requires students to justify their explanations and critique their partner's explanations, which are characteristics of critical thinking.</p>\",\"PeriodicalId\":8830,\"journal\":{\"name\":\"Biochemistry and Molecular Biology Education\",\"volume\":\"52 5\",\"pages\":\"569-579\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.21843\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Molecular Biology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmb.21843\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmb.21843","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Constructing analogies: Developing critical thinking through a collaborative task
Analogies are used to make abstract topics meaningful and more easily comprehensible to learners. Incorporating simple analogies into STEM classrooms is a fairly common practice, but the analogies are typically generated and explained by the instructor for the learners. We hypothesize that challenging learners to create complex, extended analogies themselves can promote integration of content knowledge and development of critical thinking skills, which are essential for deep learning, but are challenging to teach. In this qualitative study, college biology students (n = 30) were asked to construct a complex analogy about the flow of genetic information using a familiar item. One week later, participants constructed a second analogy about the same topic, but this time using a more challenging item. Twenty participants worked on the challenging analogy in pairs, while the other 10 worked alone. Analysis of the 50 interviews resulted in a novel-scoring scheme, which measured both content knowledge (understanding of biology terms) and critical thinking (alignment of relationships between elements of the analogy). Most participants improved slightly due to practice, but they improved dramatically when working with a partner. The biggest gains were seen in critical thinking, not content knowledge. Having students construct complex, sophisticated analogies in pairs is a high-impact practice that can help students develop their critical thinking skills, which are crucial in academic and professional settings. The discussion between partners likely requires students to justify their explanations and critique their partner's explanations, which are characteristics of critical thinking.
期刊介绍:
The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including:
Innovative techniques in teaching and learning.
New pedagogical approaches.
Research in biochemistry and molecular biology education.
Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc.
Historical Reviews describing "Paths to Discovery".
Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics.
Reviews of relevant textbooks, software, and websites.
Descriptions of software for educational use.
Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.