实施基于 LC-MS 的多属性方法 (MAM) 和完整多属性方法 (iMAM) 工作流程,以表征 GLP-Fc 融合蛋白。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ciarán Buckley , Silvia Millán-Martín , Sara Carillo , Florian Füssl , Ciara MacHale , Jonathan Bones
{"title":"实施基于 LC-MS 的多属性方法 (MAM) 和完整多属性方法 (iMAM) 工作流程,以表征 GLP-Fc 融合蛋白。","authors":"Ciarán Buckley ,&nbsp;Silvia Millán-Martín ,&nbsp;Sara Carillo ,&nbsp;Florian Füssl ,&nbsp;Ciara MacHale ,&nbsp;Jonathan Bones","doi":"10.1016/j.ab.2024.115585","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past few years, the implementation of mass spectrometry (MS) in QC laboratories has become a more common occurrence. The multi-attribute method (MAM), and emerging intact multi-attribute method (iMAM), are powerful analytical tools utilising liquid chromatography−mass spectrometry (LC-MS) methods that enable the monitoring of critical quality attributes (CQAs) in biotherapeutic proteins in compliant settings. Both MAM and iMAM are intended to replace or supplement several conventional assays with a single LC-MS method utilising MS data in combination with robust, semi-automated data processing workflows. MAM and iMAM workflows can also be implemented into current Good Manufacturing Practices environments due to the availability of CFR 11 compliant chromatography data system software. In this study, MAM and iMAM are employed for the analysis of 4 batches of a glucagon-like peptide-Fc fusion protein. MAM approach involved a first the discovery phase for the identification of CQAs and second, the target monitoring phase of the selected CQAs in other samples<em>.</em> New peak detection was performed on the data set to determine the appearance, absence or change of any peak. For native iMAM workflow both size exclusion and strong cation exchange chromatography were optimized for the identification and monitoring of CQAs at the intact level.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0003269724001295/pdfft?md5=e0ca18d3439a327f787b3a911c30949e&pid=1-s2.0-S0003269724001295-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Implementation of a LC-MS based multi-attribute method (MAM) and intact multi-attribute method (iMAM) workflow for the characterisation of a GLP-Fc fusion protein\",\"authors\":\"Ciarán Buckley ,&nbsp;Silvia Millán-Martín ,&nbsp;Sara Carillo ,&nbsp;Florian Füssl ,&nbsp;Ciara MacHale ,&nbsp;Jonathan Bones\",\"doi\":\"10.1016/j.ab.2024.115585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the past few years, the implementation of mass spectrometry (MS) in QC laboratories has become a more common occurrence. The multi-attribute method (MAM), and emerging intact multi-attribute method (iMAM), are powerful analytical tools utilising liquid chromatography−mass spectrometry (LC-MS) methods that enable the monitoring of critical quality attributes (CQAs) in biotherapeutic proteins in compliant settings. Both MAM and iMAM are intended to replace or supplement several conventional assays with a single LC-MS method utilising MS data in combination with robust, semi-automated data processing workflows. MAM and iMAM workflows can also be implemented into current Good Manufacturing Practices environments due to the availability of CFR 11 compliant chromatography data system software. In this study, MAM and iMAM are employed for the analysis of 4 batches of a glucagon-like peptide-Fc fusion protein. MAM approach involved a first the discovery phase for the identification of CQAs and second, the target monitoring phase of the selected CQAs in other samples<em>.</em> New peak detection was performed on the data set to determine the appearance, absence or change of any peak. For native iMAM workflow both size exclusion and strong cation exchange chromatography were optimized for the identification and monitoring of CQAs at the intact level.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0003269724001295/pdfft?md5=e0ca18d3439a327f787b3a911c30949e&pid=1-s2.0-S0003269724001295-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724001295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年中,质控实验室采用质谱法(MS)的情况越来越普遍。多属性方法(MAM)和新兴的完整多属性方法(iMAM)是利用液相色谱-质谱(LC-MS)方法的强大分析工具,可在符合要求的环境中监测生物治疗蛋白质的关键质量属性(CQA)。MAM 和 iMAM 的目的都是利用单一的 LC-MS 方法,结合强大的半自动数据处理工作流程,利用 MS 数据取代或补充几种传统的检测方法。由于有符合 CFR 11 标准的色谱数据系统软件,MAM 和 iMAM 工作流程也可在当前的良好生产规范环境中实施。本研究采用 MAM 和 iMAM 分析了 4 个批次的胰高血糖素样肽-Fc 融合蛋白。MAM 方法首先包括识别 CQAs 的发现阶段,其次是对其他样品中选定的 CQAs 进行目标监测阶段。对数据集进行新峰检测,以确定任何峰的出现、缺失或变化。在本机 iMAM 工作流程中,对尺寸排阻色谱和强阳离子交换色谱进行了优化,以鉴定和监测完整水平的 CQAs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Implementation of a LC-MS based multi-attribute method (MAM) and intact multi-attribute method (iMAM) workflow for the characterisation of a GLP-Fc fusion protein

Implementation of a LC-MS based multi-attribute method (MAM) and intact multi-attribute method (iMAM) workflow for the characterisation of a GLP-Fc fusion protein

Over the past few years, the implementation of mass spectrometry (MS) in QC laboratories has become a more common occurrence. The multi-attribute method (MAM), and emerging intact multi-attribute method (iMAM), are powerful analytical tools utilising liquid chromatography−mass spectrometry (LC-MS) methods that enable the monitoring of critical quality attributes (CQAs) in biotherapeutic proteins in compliant settings. Both MAM and iMAM are intended to replace or supplement several conventional assays with a single LC-MS method utilising MS data in combination with robust, semi-automated data processing workflows. MAM and iMAM workflows can also be implemented into current Good Manufacturing Practices environments due to the availability of CFR 11 compliant chromatography data system software. In this study, MAM and iMAM are employed for the analysis of 4 batches of a glucagon-like peptide-Fc fusion protein. MAM approach involved a first the discovery phase for the identification of CQAs and second, the target monitoring phase of the selected CQAs in other samples. New peak detection was performed on the data set to determine the appearance, absence or change of any peak. For native iMAM workflow both size exclusion and strong cation exchange chromatography were optimized for the identification and monitoring of CQAs at the intact level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信