Ahmed M. Alhassan, Venktesh S. Shirure, Jean Luo, Bryan B. Nguyen, Zachary A. Rollins, Bhupinder S. Shergill, Xiangdong Zhu, Nicole Baumgarth, Steven C. George
{"title":"捕获抗原特异性高亲和性 B 细胞的微流控策略","authors":"Ahmed M. Alhassan, Venktesh S. Shirure, Jean Luo, Bryan B. Nguyen, Zachary A. Rollins, Bhupinder S. Shergill, Xiangdong Zhu, Nicole Baumgarth, Steven C. George","doi":"10.1002/anbr.202300101","DOIUrl":null,"url":null,"abstract":"<p>Assessing B cell affinity to pathogen-specific antigens prior to or following exposure could facilitate the assessment of immune status. Current standard tools to assess antigen-specific B cell responses focus on equilibrium binding of the secreted antibody in serum. These methods are costly, time-consuming, and assess antibody affinity under zero force. Recent findings indicate that force may influence BCR-antigen binding interactions and thus immune status. Herein, a simple laminar flow microfluidic chamber in which the antigen (hemagglutinin of influenza A) is bound to the chamber surface to assess antigen-specific BCR binding affinity of five hemagglutinin-specific hybridomas from 65 to 650 pN force range is designed. The results demonstrate that both increasing shear force and bound lifetime can be used to enrich antigen-specific high-affinity B cells. The affinity of the membrane-bound BCR in the flow chamber correlates well with the affinity of the matched antibodies measured in solution. These findings demonstrate that a microfluidic strategy can rapidly assess BCR-antigen-binding properties and identify antigen-specific high-affinity B cells. This strategy has the potential to both assess functional immune status from peripheral B cells and be a cost-effective way of identifying individual B cells as antibody sources for a range of clinical applications.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 6","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300101","citationCount":"0","resultStr":"{\"title\":\"A Microfluidic Strategy to Capture Antigen-Specific High-Affinity B Cells\",\"authors\":\"Ahmed M. Alhassan, Venktesh S. Shirure, Jean Luo, Bryan B. Nguyen, Zachary A. Rollins, Bhupinder S. Shergill, Xiangdong Zhu, Nicole Baumgarth, Steven C. George\",\"doi\":\"10.1002/anbr.202300101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assessing B cell affinity to pathogen-specific antigens prior to or following exposure could facilitate the assessment of immune status. Current standard tools to assess antigen-specific B cell responses focus on equilibrium binding of the secreted antibody in serum. These methods are costly, time-consuming, and assess antibody affinity under zero force. Recent findings indicate that force may influence BCR-antigen binding interactions and thus immune status. Herein, a simple laminar flow microfluidic chamber in which the antigen (hemagglutinin of influenza A) is bound to the chamber surface to assess antigen-specific BCR binding affinity of five hemagglutinin-specific hybridomas from 65 to 650 pN force range is designed. The results demonstrate that both increasing shear force and bound lifetime can be used to enrich antigen-specific high-affinity B cells. The affinity of the membrane-bound BCR in the flow chamber correlates well with the affinity of the matched antibodies measured in solution. These findings demonstrate that a microfluidic strategy can rapidly assess BCR-antigen-binding properties and identify antigen-specific high-affinity B cells. This strategy has the potential to both assess functional immune status from peripheral B cells and be a cost-effective way of identifying individual B cells as antibody sources for a range of clinical applications.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 6\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300101\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
在接触病原体之前或之后评估 B 细胞对病原体特异性抗原的亲和力有助于评估免疫状态。目前评估抗原特异性 B 细胞反应的标准工具侧重于血清中分泌抗体的平衡结合。这些方法成本高、耗时长,而且评估抗体亲和力时受力为零。最近的研究结果表明,力可能会影响 BCR 与抗原结合的相互作用,从而影响免疫状态。本文设计了一个简单的层流微流体室,将抗原(甲型流感血凝素)结合到室表面,以评估五种血凝素特异性杂交瘤在 65 至 650 pN 力范围内的抗原特异性 BCR 结合亲和力。结果表明,增加剪切力和结合寿命都可用于富集抗原特异性高亲和力 B 细胞。流动室中膜结合的 BCR 的亲和力与溶液中测量的匹配抗体的亲和力有很好的相关性。这些研究结果表明,微流控策略可以快速评估BCR-抗原结合特性,并鉴定抗原特异性高亲和力B细胞。这种策略既能评估外周 B 细胞的功能性免疫状态,也是一种经济有效的方法,可鉴定作为抗体来源的单个 B 细胞,用于一系列临床应用。
A Microfluidic Strategy to Capture Antigen-Specific High-Affinity B Cells
Assessing B cell affinity to pathogen-specific antigens prior to or following exposure could facilitate the assessment of immune status. Current standard tools to assess antigen-specific B cell responses focus on equilibrium binding of the secreted antibody in serum. These methods are costly, time-consuming, and assess antibody affinity under zero force. Recent findings indicate that force may influence BCR-antigen binding interactions and thus immune status. Herein, a simple laminar flow microfluidic chamber in which the antigen (hemagglutinin of influenza A) is bound to the chamber surface to assess antigen-specific BCR binding affinity of five hemagglutinin-specific hybridomas from 65 to 650 pN force range is designed. The results demonstrate that both increasing shear force and bound lifetime can be used to enrich antigen-specific high-affinity B cells. The affinity of the membrane-bound BCR in the flow chamber correlates well with the affinity of the matched antibodies measured in solution. These findings demonstrate that a microfluidic strategy can rapidly assess BCR-antigen-binding properties and identify antigen-specific high-affinity B cells. This strategy has the potential to both assess functional immune status from peripheral B cells and be a cost-effective way of identifying individual B cells as antibody sources for a range of clinical applications.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.