通过常压等离子处理获得星形氮化锂钝化层,用于可充电锂金属电池

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Vijay Shankar Rangasamy , Bert Verheyde , Dirk Vangeneugden , Myrjam Mertens , Savitha Thayumanasundaram , Danny Havermans , Erwin Van Hoof , Pieter Lens , Annick Vanhulsel
{"title":"通过常压等离子处理获得星形氮化锂钝化层,用于可充电锂金属电池","authors":"Vijay Shankar Rangasamy ,&nbsp;Bert Verheyde ,&nbsp;Dirk Vangeneugden ,&nbsp;Myrjam Mertens ,&nbsp;Savitha Thayumanasundaram ,&nbsp;Danny Havermans ,&nbsp;Erwin Van Hoof ,&nbsp;Pieter Lens ,&nbsp;Annick Vanhulsel","doi":"10.1016/j.ssi.2024.116609","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium metal anodes are indispensable to realize the maximum energy density in future generation batteries. However, the lithium surface must be ‘protected’ to suppress its high reactivity and to stabilize its deposition and dissolution. Here, we report a process to form a lithium nitride (Li<sub>3</sub>N) protective layer on lithium by a two-minute treatment in a dielectric barrier discharge (DBD) plasma. The process does not require low-pressure conditions or time-intensive post-treatments. The passivation layer is characterized by a unique, hexagonal bipyramid morphology, with α-Li<sub>3</sub>N crystals stacked to form pillar-like structures. Such an arrangement is shown to be favorable for fast Li<sup>+</sup> ion diffusion and dendrite prevention, as demonstrated by the stable Li plating/stripping of symmetric cells with passivated lithium (500 cycles compared to 150 cycles with bare lithium) at 1 mA/cm<sup>2</sup>. Full cells with LiNi<sub>0.33</sub>Mn<sub>0.33</sub>Co<sub>0.33</sub>O<sub>2</sub> (NMC111) cathode and passivated lithium anode retain 74% of their initial capacity after 300 cycles at 1C rate, by which time the cells with bare Li anode fail completely. This approach promises to be a practical solution for lithium passivation at industrial scale.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"413 ","pages":"Article 116609"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Star-shaped lithium nitride passivation layer obtained by atmospheric-pressure plasma treatment for rechargeable lithium metal batteries\",\"authors\":\"Vijay Shankar Rangasamy ,&nbsp;Bert Verheyde ,&nbsp;Dirk Vangeneugden ,&nbsp;Myrjam Mertens ,&nbsp;Savitha Thayumanasundaram ,&nbsp;Danny Havermans ,&nbsp;Erwin Van Hoof ,&nbsp;Pieter Lens ,&nbsp;Annick Vanhulsel\",\"doi\":\"10.1016/j.ssi.2024.116609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium metal anodes are indispensable to realize the maximum energy density in future generation batteries. However, the lithium surface must be ‘protected’ to suppress its high reactivity and to stabilize its deposition and dissolution. Here, we report a process to form a lithium nitride (Li<sub>3</sub>N) protective layer on lithium by a two-minute treatment in a dielectric barrier discharge (DBD) plasma. The process does not require low-pressure conditions or time-intensive post-treatments. The passivation layer is characterized by a unique, hexagonal bipyramid morphology, with α-Li<sub>3</sub>N crystals stacked to form pillar-like structures. Such an arrangement is shown to be favorable for fast Li<sup>+</sup> ion diffusion and dendrite prevention, as demonstrated by the stable Li plating/stripping of symmetric cells with passivated lithium (500 cycles compared to 150 cycles with bare lithium) at 1 mA/cm<sup>2</sup>. Full cells with LiNi<sub>0.33</sub>Mn<sub>0.33</sub>Co<sub>0.33</sub>O<sub>2</sub> (NMC111) cathode and passivated lithium anode retain 74% of their initial capacity after 300 cycles at 1C rate, by which time the cells with bare Li anode fail completely. This approach promises to be a practical solution for lithium passivation at industrial scale.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"413 \",\"pages\":\"Article 116609\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824001577\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001577","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂金属阳极是未来新一代电池实现最大能量密度所不可或缺的。然而,锂表面必须受到 "保护",以抑制其高活性并稳定其沉积和溶解。在此,我们报告了一种在介质阻挡放电(DBD)等离子体中进行两分钟处理,从而在锂表面形成氮化锂(Li3N)保护层的工艺。该工艺不需要低压条件或时间密集型后处理。钝化层具有独特的六角形双锥体形态,α-Li3N 晶体堆叠形成柱状结构。这种排列有利于锂离子的快速扩散和防止枝晶的产生,在 1 mA/cm2 的条件下,对称电池在锂离子钝化层的稳定镀层/剥离(500 次循环,而裸锂电池只有 150 次循环)就证明了这一点。采用 LiNi0.33Mn0.33Co0.33O2(NMC111)正极和钝化锂负极的全电池在 1C 速率下循环 300 次后仍能保持 74% 的初始容量,而此时采用裸锂负极的电池则完全失效。这种方法有望成为工业规模锂钝化的实用解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Star-shaped lithium nitride passivation layer obtained by atmospheric-pressure plasma treatment for rechargeable lithium metal batteries

Lithium metal anodes are indispensable to realize the maximum energy density in future generation batteries. However, the lithium surface must be ‘protected’ to suppress its high reactivity and to stabilize its deposition and dissolution. Here, we report a process to form a lithium nitride (Li3N) protective layer on lithium by a two-minute treatment in a dielectric barrier discharge (DBD) plasma. The process does not require low-pressure conditions or time-intensive post-treatments. The passivation layer is characterized by a unique, hexagonal bipyramid morphology, with α-Li3N crystals stacked to form pillar-like structures. Such an arrangement is shown to be favorable for fast Li+ ion diffusion and dendrite prevention, as demonstrated by the stable Li plating/stripping of symmetric cells with passivated lithium (500 cycles compared to 150 cycles with bare lithium) at 1 mA/cm2. Full cells with LiNi0.33Mn0.33Co0.33O2 (NMC111) cathode and passivated lithium anode retain 74% of their initial capacity after 300 cycles at 1C rate, by which time the cells with bare Li anode fail completely. This approach promises to be a practical solution for lithium passivation at industrial scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信