克鲁泽克-拉维亚特有限元的两个单参数非顺应富集族

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Federico Nudo
{"title":"克鲁泽克-拉维亚特有限元的两个单参数非顺应富集族","authors":"Federico Nudo","doi":"10.1016/j.apnum.2024.05.023","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce two one-parameter families of quadratic polynomial enrichments designed to enhance the accuracy of the classical Crouzeix–Raviart finite element. These enrichments are realized by using weighted line integrals as enriched linear functionals and quadratic polynomial functions as enrichment functions. To validate the effectiveness of our approach, we conduct numerical experiments that confirm the improvement achieved by the proposed method.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001375/pdfft?md5=94fcf67e97df0d893b8352a366187794&pid=1-s2.0-S0168927424001375-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Two one-parameter families of nonconforming enrichments of the Crouzeix–Raviart finite element\",\"authors\":\"Federico Nudo\",\"doi\":\"10.1016/j.apnum.2024.05.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce two one-parameter families of quadratic polynomial enrichments designed to enhance the accuracy of the classical Crouzeix–Raviart finite element. These enrichments are realized by using weighted line integrals as enriched linear functionals and quadratic polynomial functions as enrichment functions. To validate the effectiveness of our approach, we conduct numerical experiments that confirm the improvement achieved by the proposed method.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001375/pdfft?md5=94fcf67e97df0d893b8352a366187794&pid=1-s2.0-S0168927424001375-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了两个单参数二次多项式富集族,旨在提高经典 Crouzeix-Raviart 有限元的精度。这些富集是通过使用加权线积分作为富集线性函数和二次多项式函数作为富集函数来实现的。为了验证我们方法的有效性,我们进行了数值实验,证实了所提方法实现的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two one-parameter families of nonconforming enrichments of the Crouzeix–Raviart finite element

In this paper, we introduce two one-parameter families of quadratic polynomial enrichments designed to enhance the accuracy of the classical Crouzeix–Raviart finite element. These enrichments are realized by using weighted line integrals as enriched linear functionals and quadratic polynomial functions as enrichment functions. To validate the effectiveness of our approach, we conduct numerical experiments that confirm the improvement achieved by the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信