使用轨迹校正滞后 (TCH) 模型,利用锂离子电池中的滞后开路电压估算充电状态

IF 5.4 Q2 CHEMISTRY, PHYSICAL
Jakob Schmitt, Ivo Horstkötter, Bernard Bäker
{"title":"使用轨迹校正滞后 (TCH) 模型,利用锂离子电池中的滞后开路电压估算充电状态","authors":"Jakob Schmitt,&nbsp;Ivo Horstkötter,&nbsp;Bernard Bäker","doi":"10.1016/j.powera.2024.100151","DOIUrl":null,"url":null,"abstract":"<div><p>State-of-the-art lithium-ion cell chemistries with pronounced open-circuit voltage hysteresis (OCV), characterised by asymmetry and directional dependence, present a challenge for estimating the state of charge (SOC). Without understanding the hysteresis behaviour, OCV measurement points that lie within the hysteresis window cannot be used for SOC correction. After obtaining the data efficiency of the trajectory correction hysteresis (TCH) model with the introduction of the transfer fit (TF) method, this work applies the TF TCH for OCV-based SOC correction. The TF method plays a key role as it enables the cell-specific adaptation of an existing TCH model - ageing update is achieved with solely 12 (SOC/OCV) measurement points. With the precise hysteresis model, the developed framework successfully corrects the faulty SOC history, which could originate from a vehicle data logger. Given that two OCV measurement points are available that arbitrarily lie within the SOC history, the SOC correction is achieved by minimising the voltage deviation between the measurement points and the TCH model’s simulation. Identifying the two SOC parameters shift and scale enables subsequent SOC estimation until an additional OCV measurement is available for a further update. The functionality of the presented SOC correction framework is demonstrated using two validation profiles.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000179/pdfft?md5=df1f989419b231124ebdbb3a25c57dc9&pid=1-s2.0-S2666248524000179-main.pdf","citationCount":"0","resultStr":"{\"title\":\"State of charge estimation with hysteresis-prone open circuit voltage in lithium-ion batteries using the trajectory correction hysteresis (TCH) model\",\"authors\":\"Jakob Schmitt,&nbsp;Ivo Horstkötter,&nbsp;Bernard Bäker\",\"doi\":\"10.1016/j.powera.2024.100151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>State-of-the-art lithium-ion cell chemistries with pronounced open-circuit voltage hysteresis (OCV), characterised by asymmetry and directional dependence, present a challenge for estimating the state of charge (SOC). Without understanding the hysteresis behaviour, OCV measurement points that lie within the hysteresis window cannot be used for SOC correction. After obtaining the data efficiency of the trajectory correction hysteresis (TCH) model with the introduction of the transfer fit (TF) method, this work applies the TF TCH for OCV-based SOC correction. The TF method plays a key role as it enables the cell-specific adaptation of an existing TCH model - ageing update is achieved with solely 12 (SOC/OCV) measurement points. With the precise hysteresis model, the developed framework successfully corrects the faulty SOC history, which could originate from a vehicle data logger. Given that two OCV measurement points are available that arbitrarily lie within the SOC history, the SOC correction is achieved by minimising the voltage deviation between the measurement points and the TCH model’s simulation. Identifying the two SOC parameters shift and scale enables subsequent SOC estimation until an additional OCV measurement is available for a further update. The functionality of the presented SOC correction framework is demonstrated using two validation profiles.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000179/pdfft?md5=df1f989419b231124ebdbb3a25c57dc9&pid=1-s2.0-S2666248524000179-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

最先进的锂离子电池化学特性具有明显的开路电压滞后(OCV),其特点是不对称和方向依赖性,这给估算充电状态(SOC)带来了挑战。在不了解滞后行为的情况下,位于滞后窗口内的 OCV 测量点无法用于 SOC 修正。在通过引入转移拟合(TF)方法获得轨迹修正滞后(TCH)模型的数据效率后,本研究将 TF TCH 应用于基于 OCV 的 SOC 修正。TF 方法发挥了关键作用,因为它能对现有的 TCH 模型进行特定的细胞调整--只需 12 个(SOC/OCV)测量点就能实现老化更新。利用精确的滞后模型,所开发的框架成功修正了可能来自车辆数据记录器的错误 SOC 历史记录。鉴于有两个 OCV 测量点任意位于 SOC 历史记录中,SOC 修正是通过最小化测量点与 TCH 模型模拟之间的电压偏差来实现的。确定两个 SOC 参数的偏移和比例后,就能进行后续的 SOC 估算,直到有额外的 OCV 测量点可供进一步更新。本文介绍的 SOC 校正框架的功能通过两个验证配置文件进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State of charge estimation with hysteresis-prone open circuit voltage in lithium-ion batteries using the trajectory correction hysteresis (TCH) model

State-of-the-art lithium-ion cell chemistries with pronounced open-circuit voltage hysteresis (OCV), characterised by asymmetry and directional dependence, present a challenge for estimating the state of charge (SOC). Without understanding the hysteresis behaviour, OCV measurement points that lie within the hysteresis window cannot be used for SOC correction. After obtaining the data efficiency of the trajectory correction hysteresis (TCH) model with the introduction of the transfer fit (TF) method, this work applies the TF TCH for OCV-based SOC correction. The TF method plays a key role as it enables the cell-specific adaptation of an existing TCH model - ageing update is achieved with solely 12 (SOC/OCV) measurement points. With the precise hysteresis model, the developed framework successfully corrects the faulty SOC history, which could originate from a vehicle data logger. Given that two OCV measurement points are available that arbitrarily lie within the SOC history, the SOC correction is achieved by minimising the voltage deviation between the measurement points and the TCH model’s simulation. Identifying the two SOC parameters shift and scale enables subsequent SOC estimation until an additional OCV measurement is available for a further update. The functionality of the presented SOC correction framework is demonstrated using two validation profiles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信