从社会技术角度看算法公平性的显式不公平缓解技术

Nimisha Singh , Amita Kapoor , Neha Soni
{"title":"从社会技术角度看算法公平性的显式不公平缓解技术","authors":"Nimisha Singh ,&nbsp;Amita Kapoor ,&nbsp;Neha Soni","doi":"10.1016/j.jjimei.2024.100259","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing use of artificial intelligence (AI) applications in decision making, there are heightened concerns about the fairness of such decisions. Initiatives like Responsible AI, Fair ML, Ethics in AI have provided guidelines for developing AI as an attempt to address these challenges. These approaches have been criticized for taking a top down approach by applying abstract principles to practice without taking into account the context and particularities of the algorithm development. Using the sociotechnical lens, we propose a framework for developing Fair algorithm. We apply this framework to mitigate unfairness in three distinct datasets: COMPAS (Correctional Offender Management Profiling for Alternative Sanctions), Crimes and Community, and a synthetic dataset. Our methodology involves nonconvex optimization for regression with fairness constraints. The experimentation examines the correlation coefficient, Area Under the Curve (AUC), and Root Mean Square Error (RMSE) in relation to a fairness parameter, epsilon. Our findings suggest three objectively testable propositions namely, 1) Fairness Constraint and Predictive power, 2) Fairness Constraints and Discriminatory Ability, 3) Fairness Constraints and Prediction Accuracy.</p></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 2","pages":"Article 100259"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266709682400048X/pdfft?md5=8b9077e68824868011989c6c7cd49d83&pid=1-s2.0-S266709682400048X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A sociotechnical perspective for explicit unfairness mitigation techniques for algorithm fairness\",\"authors\":\"Nimisha Singh ,&nbsp;Amita Kapoor ,&nbsp;Neha Soni\",\"doi\":\"10.1016/j.jjimei.2024.100259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing use of artificial intelligence (AI) applications in decision making, there are heightened concerns about the fairness of such decisions. Initiatives like Responsible AI, Fair ML, Ethics in AI have provided guidelines for developing AI as an attempt to address these challenges. These approaches have been criticized for taking a top down approach by applying abstract principles to practice without taking into account the context and particularities of the algorithm development. Using the sociotechnical lens, we propose a framework for developing Fair algorithm. We apply this framework to mitigate unfairness in three distinct datasets: COMPAS (Correctional Offender Management Profiling for Alternative Sanctions), Crimes and Community, and a synthetic dataset. Our methodology involves nonconvex optimization for regression with fairness constraints. The experimentation examines the correlation coefficient, Area Under the Curve (AUC), and Root Mean Square Error (RMSE) in relation to a fairness parameter, epsilon. Our findings suggest three objectively testable propositions namely, 1) Fairness Constraint and Predictive power, 2) Fairness Constraints and Discriminatory Ability, 3) Fairness Constraints and Prediction Accuracy.</p></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"4 2\",\"pages\":\"Article 100259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266709682400048X/pdfft?md5=8b9077e68824868011989c6c7cd49d83&pid=1-s2.0-S266709682400048X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266709682400048X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266709682400048X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能(AI)应用在决策中的使用越来越多,人们对此类决策的公平性更加关注。负责任的人工智能、公平的 ML、人工智能伦理等倡议为开发人工智能提供了指导方针,试图应对这些挑战。这些方法受到了批评,因为它们采用了自上而下的方法,将抽象的原则应用于实践,而没有考虑到算法开发的背景和特殊性。利用社会技术视角,我们提出了一个开发公平算法的框架。我们将这一框架应用于三个不同的数据集,以减少不公平现象:COMPAS (Correctional Offender Management Profiling for Alternative Sanctions)、《犯罪与社区》(Crimes and Community)和一个合成数据集。我们的方法涉及带有公平性约束的回归非凸优化。实验检验了与公平性参数ε相关的相关系数、曲线下面积(AUC)和均方根误差(RMSE)。我们的研究结果提出了三个可客观检验的命题,即:1)公平性约束与预测能力;2)公平性约束与判别能力;3)公平性约束与预测准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sociotechnical perspective for explicit unfairness mitigation techniques for algorithm fairness

With the increasing use of artificial intelligence (AI) applications in decision making, there are heightened concerns about the fairness of such decisions. Initiatives like Responsible AI, Fair ML, Ethics in AI have provided guidelines for developing AI as an attempt to address these challenges. These approaches have been criticized for taking a top down approach by applying abstract principles to practice without taking into account the context and particularities of the algorithm development. Using the sociotechnical lens, we propose a framework for developing Fair algorithm. We apply this framework to mitigate unfairness in three distinct datasets: COMPAS (Correctional Offender Management Profiling for Alternative Sanctions), Crimes and Community, and a synthetic dataset. Our methodology involves nonconvex optimization for regression with fairness constraints. The experimentation examines the correlation coefficient, Area Under the Curve (AUC), and Root Mean Square Error (RMSE) in relation to a fairness parameter, epsilon. Our findings suggest three objectively testable propositions namely, 1) Fairness Constraint and Predictive power, 2) Fairness Constraints and Discriminatory Ability, 3) Fairness Constraints and Prediction Accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信