预测哥伦比亚的地热梯度:机器学习方法

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS
Juan C. Mejía-Fragoso, Manuel A. Flórez, Rocío Bernal-Olaya
{"title":"预测哥伦比亚的地热梯度:机器学习方法","authors":"Juan C. Mejía-Fragoso,&nbsp;Manuel A. Flórez,&nbsp;Rocío Bernal-Olaya","doi":"10.1016/j.geothermics.2024.103074","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately determining the geothermal gradient is crucial for assessing geothermal energy potential. In Colombia, despite an abundance of theoretical geothermal resources, large regions of the country lack gradient measurements. This study introduces a machine learning approach to estimate the geothermal gradient in regions where only global-scale geophysical datasets and course geological knowledge are available. We find that a Gradient-Boosted Regression Tree algorithm yields optimal predictions and extensively validates the trained model, obtaining predictions of our model within 12% accuracy. Finally, we present a geothermal gradient map of Colombia that serve as an indicator of potential regions for further exploration and data collection. This map displays gradient values ranging from 16.75 to 41.20 °C/km and shows significant agreement with geological indicators of geothermal activity, such as faults and thermal manifestations. Additionally, our results are consistent with independent findings from other researchers in specific regions, which supports the reliability of our approach.</p></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0375650524001639/pdfft?md5=32ce2d771804541ee6afa065457306f0&pid=1-s2.0-S0375650524001639-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting the geothermal gradient in Colombia: A machine learning approach\",\"authors\":\"Juan C. Mejía-Fragoso,&nbsp;Manuel A. Flórez,&nbsp;Rocío Bernal-Olaya\",\"doi\":\"10.1016/j.geothermics.2024.103074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurately determining the geothermal gradient is crucial for assessing geothermal energy potential. In Colombia, despite an abundance of theoretical geothermal resources, large regions of the country lack gradient measurements. This study introduces a machine learning approach to estimate the geothermal gradient in regions where only global-scale geophysical datasets and course geological knowledge are available. We find that a Gradient-Boosted Regression Tree algorithm yields optimal predictions and extensively validates the trained model, obtaining predictions of our model within 12% accuracy. Finally, we present a geothermal gradient map of Colombia that serve as an indicator of potential regions for further exploration and data collection. This map displays gradient values ranging from 16.75 to 41.20 °C/km and shows significant agreement with geological indicators of geothermal activity, such as faults and thermal manifestations. Additionally, our results are consistent with independent findings from other researchers in specific regions, which supports the reliability of our approach.</p></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0375650524001639/pdfft?md5=32ce2d771804541ee6afa065457306f0&pid=1-s2.0-S0375650524001639-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650524001639\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524001639","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

准确确定地热梯度对于评估地热能源潜力至关重要。在哥伦比亚,尽管理论上地热资源丰富,但该国大部分地区缺乏梯度测量。本研究介绍了一种机器学习方法,用于估算只有全球尺度地球物理数据集和当然地质知识的地区的地热梯度。我们发现,梯度提升回归树算法可获得最佳预测结果,并对训练有素的模型进行了广泛验证,我们的模型预测准确率在 12% 以内。最后,我们展示了哥伦比亚地热梯度图,作为进一步勘探和收集数据的潜在区域指标。该地图显示的梯度值范围为 16.75 至 41.20 °C/km,与地热活动的地质指标(如断层和热表现)非常吻合。此外,我们的研究结果与其他研究人员在特定区域的独立发现一致,这证明了我们方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the geothermal gradient in Colombia: A machine learning approach

Accurately determining the geothermal gradient is crucial for assessing geothermal energy potential. In Colombia, despite an abundance of theoretical geothermal resources, large regions of the country lack gradient measurements. This study introduces a machine learning approach to estimate the geothermal gradient in regions where only global-scale geophysical datasets and course geological knowledge are available. We find that a Gradient-Boosted Regression Tree algorithm yields optimal predictions and extensively validates the trained model, obtaining predictions of our model within 12% accuracy. Finally, we present a geothermal gradient map of Colombia that serve as an indicator of potential regions for further exploration and data collection. This map displays gradient values ranging from 16.75 to 41.20 °C/km and shows significant agreement with geological indicators of geothermal activity, such as faults and thermal manifestations. Additionally, our results are consistent with independent findings from other researchers in specific regions, which supports the reliability of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信