Yuqing Feng , Ke Jiang , Xingxing Kuang , Yingying Yao , Sihai Liang , Kaining Yu , Junguo Liu , Chunmiao Zheng
{"title":"青藏高原雅鲁藏布江盆地融水在缓冲河流径流中的双重作用","authors":"Yuqing Feng , Ke Jiang , Xingxing Kuang , Yingying Yao , Sihai Liang , Kaining Yu , Junguo Liu , Chunmiao Zheng","doi":"10.1016/j.ejrh.2024.101857","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><p>The Yarlung Zangbo Basin (YZB) on the Tibetan Plateau, the world's highest river basin, features a significant cryosphere with glaciers and seasonal snow cover crucial to its hydrology. The study focuses on the region between the Nuxia and Dexing river gauging stations, where glaciers cover 15.4 % of the area.</p></div><div><h3>Study focus</h3><p>The research quantifies the contributions of snow melt (SM) runoff, glacier melt (GM) runoff, rainfall runoff, and baseflow to the total runoff in the YZB. The Spatial Processes in Hydrology (SPHY) model, enhanced with a cryosphere module, was utilized, calibrated with runoff data from the Nuxia station and evapotranspiration data from 2003 to 2014.</p></div><div><h3>New hydrological insights</h3><p>The study found rainfall runoff to be the primary contributor to annual runoff (66.3 %), followed by snow melt runoff (19.7 %), glacier melt runoff (6.2 %), and baseflow (7.8 %). Snow melt runoff is dominant in early spring, while baseflow prevails in winter. Glacier melt runoff contributes directly to river flow (90.1 %) and replenishes groundwater (9.9 %), which then drains as baseflow. In glacier-rich areas, percolated glacier meltwater significantly recharges groundwater, underscoring its vital role in sustaining river flow in the YZB. This research enhances the understanding of hydrological processes in large alpine river basins and highlights the crucial role of glacier and snow melt in maintaining the Tibetan Plateau's water resources.</p></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"54 ","pages":"Article 101857"},"PeriodicalIF":5.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214581824002052/pdfft?md5=e8c842548d30c1e0b38832fc842480cf&pid=1-s2.0-S2214581824002052-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The dual role of meltwater in buffering river runoff in the Yarlung Zangbo Basin, Tibetan Plateau\",\"authors\":\"Yuqing Feng , Ke Jiang , Xingxing Kuang , Yingying Yao , Sihai Liang , Kaining Yu , Junguo Liu , Chunmiao Zheng\",\"doi\":\"10.1016/j.ejrh.2024.101857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><p>The Yarlung Zangbo Basin (YZB) on the Tibetan Plateau, the world's highest river basin, features a significant cryosphere with glaciers and seasonal snow cover crucial to its hydrology. The study focuses on the region between the Nuxia and Dexing river gauging stations, where glaciers cover 15.4 % of the area.</p></div><div><h3>Study focus</h3><p>The research quantifies the contributions of snow melt (SM) runoff, glacier melt (GM) runoff, rainfall runoff, and baseflow to the total runoff in the YZB. The Spatial Processes in Hydrology (SPHY) model, enhanced with a cryosphere module, was utilized, calibrated with runoff data from the Nuxia station and evapotranspiration data from 2003 to 2014.</p></div><div><h3>New hydrological insights</h3><p>The study found rainfall runoff to be the primary contributor to annual runoff (66.3 %), followed by snow melt runoff (19.7 %), glacier melt runoff (6.2 %), and baseflow (7.8 %). Snow melt runoff is dominant in early spring, while baseflow prevails in winter. Glacier melt runoff contributes directly to river flow (90.1 %) and replenishes groundwater (9.9 %), which then drains as baseflow. In glacier-rich areas, percolated glacier meltwater significantly recharges groundwater, underscoring its vital role in sustaining river flow in the YZB. This research enhances the understanding of hydrological processes in large alpine river basins and highlights the crucial role of glacier and snow melt in maintaining the Tibetan Plateau's water resources.</p></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"54 \",\"pages\":\"Article 101857\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214581824002052/pdfft?md5=e8c842548d30c1e0b38832fc842480cf&pid=1-s2.0-S2214581824002052-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581824002052\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824002052","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
The dual role of meltwater in buffering river runoff in the Yarlung Zangbo Basin, Tibetan Plateau
Study region
The Yarlung Zangbo Basin (YZB) on the Tibetan Plateau, the world's highest river basin, features a significant cryosphere with glaciers and seasonal snow cover crucial to its hydrology. The study focuses on the region between the Nuxia and Dexing river gauging stations, where glaciers cover 15.4 % of the area.
Study focus
The research quantifies the contributions of snow melt (SM) runoff, glacier melt (GM) runoff, rainfall runoff, and baseflow to the total runoff in the YZB. The Spatial Processes in Hydrology (SPHY) model, enhanced with a cryosphere module, was utilized, calibrated with runoff data from the Nuxia station and evapotranspiration data from 2003 to 2014.
New hydrological insights
The study found rainfall runoff to be the primary contributor to annual runoff (66.3 %), followed by snow melt runoff (19.7 %), glacier melt runoff (6.2 %), and baseflow (7.8 %). Snow melt runoff is dominant in early spring, while baseflow prevails in winter. Glacier melt runoff contributes directly to river flow (90.1 %) and replenishes groundwater (9.9 %), which then drains as baseflow. In glacier-rich areas, percolated glacier meltwater significantly recharges groundwater, underscoring its vital role in sustaining river flow in the YZB. This research enhances the understanding of hydrological processes in large alpine river basins and highlights the crucial role of glacier and snow melt in maintaining the Tibetan Plateau's water resources.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.