通过 S-残差核的四元球面扇形和耗散算子

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chao Wang, Guangzhou Qin
{"title":"通过 S-残差核的四元球面扇形和耗散算子","authors":"Chao Wang,&nbsp;Guangzhou Qin","doi":"10.1016/j.geomphys.2024.105240","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we treat the quaternionic functional calculus for right linear quaternionic operators whose components do not necessarily commute and develop a theory of quaternionic non-negative operator, spherical sectorial operator and dissipative operator via <em>S</em>-resolvent kernels in quaternionic locally convex spaces (short for <span><math><mi>q</mi><mo>.</mo><mi>l</mi><mo>.</mo><mi>c</mi><mo>.</mo><mi>s</mi></math></span>.). The notions of quaternionic non-negative operators and quaternionic (<em>m</em>-)dissipative operators are introduced via <em>S</em>-resolvent operators and <span><math><mi>H</mi></math></span>-valued inner product on Hilbert <span><math><mi>H</mi></math></span>-bimodule. By choosing the suitable spherical sector, the spherical sectorial operator is introduced to establish the relationship with the quaternionic non-negative operator. It is crucial to note that the quaternionic operators we consider do not necessarily commute.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quaternionic spherical sectorial and dissipative operators via S-resolvent kernels\",\"authors\":\"Chao Wang,&nbsp;Guangzhou Qin\",\"doi\":\"10.1016/j.geomphys.2024.105240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we treat the quaternionic functional calculus for right linear quaternionic operators whose components do not necessarily commute and develop a theory of quaternionic non-negative operator, spherical sectorial operator and dissipative operator via <em>S</em>-resolvent kernels in quaternionic locally convex spaces (short for <span><math><mi>q</mi><mo>.</mo><mi>l</mi><mo>.</mo><mi>c</mi><mo>.</mo><mi>s</mi></math></span>.). The notions of quaternionic non-negative operators and quaternionic (<em>m</em>-)dissipative operators are introduced via <em>S</em>-resolvent operators and <span><math><mi>H</mi></math></span>-valued inner product on Hilbert <span><math><mi>H</mi></math></span>-bimodule. By choosing the suitable spherical sector, the spherical sectorial operator is introduced to establish the relationship with the quaternionic non-negative operator. It is crucial to note that the quaternionic operators we consider do not necessarily commute.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024001414\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001414","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们处理了分量不一定换算的右线性四元数算子的四元数函数微积分,并通过四元数局部凸空间(简称q.l.c.s.)中的S-溶剂核发展了四元数非负算子、球扇形算子和耗散算子的理论。四元非负算子和四元(m-)耗散算子的概念是通过希尔伯特 H 二模子上的 S-溶剂算子和 H 值内积引入的。通过选择合适的球面扇形,引入球面扇形算子以建立与四元非负算子的关系。需要注意的是,我们所考虑的四元数算子并不一定相交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quaternionic spherical sectorial and dissipative operators via S-resolvent kernels

In this paper, we treat the quaternionic functional calculus for right linear quaternionic operators whose components do not necessarily commute and develop a theory of quaternionic non-negative operator, spherical sectorial operator and dissipative operator via S-resolvent kernels in quaternionic locally convex spaces (short for q.l.c.s.). The notions of quaternionic non-negative operators and quaternionic (m-)dissipative operators are introduced via S-resolvent operators and H-valued inner product on Hilbert H-bimodule. By choosing the suitable spherical sector, the spherical sectorial operator is introduced to establish the relationship with the quaternionic non-negative operator. It is crucial to note that the quaternionic operators we consider do not necessarily commute.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信