Tamay Besiroglu , Nicholas Emery-Xu , Neil Thompson
{"title":"人工智能研发对经济的影响","authors":"Tamay Besiroglu , Nicholas Emery-Xu , Neil Thompson","doi":"10.1016/j.respol.2024.105037","DOIUrl":null,"url":null,"abstract":"<div><p>Since its emergence around 2010, deep learning has rapidly become the most important technique in Artificial Intelligence (AI), producing an array of scientific firsts in areas as diverse as protein folding, drug discovery, integrated chip design, and weather prediction. As scientists and engineers adopt deep learning, it is important to consider what effect widespread deployment would have on scientific progress and, ultimately, economic growth. We assess this impact by estimating the idea production function for AI in two computer vision tasks that are considered key test-beds for deep learning and show that AI idea production is notably more capital-intensive than traditional R&D. Because increasing the capital-intensity of R&D accelerates the investments that make scientists and engineers more productive, our work suggests that AI-augmented R&D has the potential to speed up technological change and economic growth.</p></div>","PeriodicalId":48466,"journal":{"name":"Research Policy","volume":"53 7","pages":"Article 105037"},"PeriodicalIF":7.5000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0048733324000866/pdfft?md5=24bc0541ea5d2dd0e378272ab9064a33&pid=1-s2.0-S0048733324000866-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Economic impacts of AI-augmented R&D\",\"authors\":\"Tamay Besiroglu , Nicholas Emery-Xu , Neil Thompson\",\"doi\":\"10.1016/j.respol.2024.105037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since its emergence around 2010, deep learning has rapidly become the most important technique in Artificial Intelligence (AI), producing an array of scientific firsts in areas as diverse as protein folding, drug discovery, integrated chip design, and weather prediction. As scientists and engineers adopt deep learning, it is important to consider what effect widespread deployment would have on scientific progress and, ultimately, economic growth. We assess this impact by estimating the idea production function for AI in two computer vision tasks that are considered key test-beds for deep learning and show that AI idea production is notably more capital-intensive than traditional R&D. Because increasing the capital-intensity of R&D accelerates the investments that make scientists and engineers more productive, our work suggests that AI-augmented R&D has the potential to speed up technological change and economic growth.</p></div>\",\"PeriodicalId\":48466,\"journal\":{\"name\":\"Research Policy\",\"volume\":\"53 7\",\"pages\":\"Article 105037\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0048733324000866/pdfft?md5=24bc0541ea5d2dd0e378272ab9064a33&pid=1-s2.0-S0048733324000866-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Policy\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048733324000866\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Policy","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048733324000866","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
Since its emergence around 2010, deep learning has rapidly become the most important technique in Artificial Intelligence (AI), producing an array of scientific firsts in areas as diverse as protein folding, drug discovery, integrated chip design, and weather prediction. As scientists and engineers adopt deep learning, it is important to consider what effect widespread deployment would have on scientific progress and, ultimately, economic growth. We assess this impact by estimating the idea production function for AI in two computer vision tasks that are considered key test-beds for deep learning and show that AI idea production is notably more capital-intensive than traditional R&D. Because increasing the capital-intensity of R&D accelerates the investments that make scientists and engineers more productive, our work suggests that AI-augmented R&D has the potential to speed up technological change and economic growth.
期刊介绍:
Research Policy (RP) articles explore the interaction between innovation, technology, or research, and economic, social, political, and organizational processes, both empirically and theoretically. All RP papers are expected to provide insights with implications for policy or management.
Research Policy (RP) is a multidisciplinary journal focused on analyzing, understanding, and effectively addressing the challenges posed by innovation, technology, R&D, and science. This includes activities related to knowledge creation, diffusion, acquisition, and exploitation in the form of new or improved products, processes, or services, across economic, policy, management, organizational, and environmental dimensions.