Hastings Shamaoma, Paxie W Chirwa, Jules C Zekeng, Able Ramoelo, Andrew T Hudak, Ferdinand Handavu, Stephen Syampungani
{"title":"探索将无人机系统激光雷达作为一种采样工具,用于在赞比亚的米翁博林地进行基于卫星的 AGB 估算。","authors":"Hastings Shamaoma, Paxie W Chirwa, Jules C Zekeng, Able Ramoelo, Andrew T Hudak, Ferdinand Handavu, Stephen Syampungani","doi":"10.1186/s13007-024-01212-4","DOIUrl":null,"url":null,"abstract":"<p><p>To date, only a limited number of studies have utilized remote sensing imagery to estimate aboveground biomass (AGB) in the Miombo ecoregion using wall-to-wall medium resolution optical satellite imagery (Sentinel-2 and Landsat), localized airborne light detection and ranging (lidar), or localized unmanned aerial systems (UAS) images. On the one hand, the optical satellite imagery is suitable for wall-to-wall coverage, but the AGB estimates based on such imagery lack precision for local or stand-level sustainable forest management and international reporting mechanisms. On the other hand, the AGB estimates based on airborne lidar and UAS imagery have the precision required for sustainable forest management at a local level and international reporting requirements but lack capacity for wall-to-wall coverage. Therefore, the main aim of this study was to investigate the use of UAS-lidar as a sampling tool for satellite-based AGB estimation in the Miombo woodlands of Zambia. In order to bridge the spatial data gap, this study employed a two-phase sampling approach, utilizing Sentinel-2 imagery, partial-coverage UAS-lidar data, and field plot data to estimate AGB in the 8094-hectare Miengwe Forest, Miombo Woodlands, Zambia, where UAS-lidar estimated AGB was used as reference data for estimating AGB using Sentinel-2 image metrics. The findings showed that utilizing UAS-lidar as reference data for predicting AGB using Sentinel-2 image metrics yielded superior results (Adj-R<sup>2</sup> = 0.70, RMSE = 27.97) than using direct field estimated AGB and Sentinel-2 image metrics (R<sup>2</sup> = 0.55, RMSE = 38.10). The quality of AGB estimates obtained from this approach, coupled with the ongoing advancement and cost-cutting of UAS-lidar technology as well as the continuous availability of wall-to-wall optical imagery such as Sentinel-2, provides much-needed direction for future forest structural attribute estimation for efficient management of the Miombo woodlands.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"88"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162019/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring UAS-lidar as a sampling tool for satellite-based AGB estimations in the Miombo woodland of Zambia.\",\"authors\":\"Hastings Shamaoma, Paxie W Chirwa, Jules C Zekeng, Able Ramoelo, Andrew T Hudak, Ferdinand Handavu, Stephen Syampungani\",\"doi\":\"10.1186/s13007-024-01212-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To date, only a limited number of studies have utilized remote sensing imagery to estimate aboveground biomass (AGB) in the Miombo ecoregion using wall-to-wall medium resolution optical satellite imagery (Sentinel-2 and Landsat), localized airborne light detection and ranging (lidar), or localized unmanned aerial systems (UAS) images. On the one hand, the optical satellite imagery is suitable for wall-to-wall coverage, but the AGB estimates based on such imagery lack precision for local or stand-level sustainable forest management and international reporting mechanisms. On the other hand, the AGB estimates based on airborne lidar and UAS imagery have the precision required for sustainable forest management at a local level and international reporting requirements but lack capacity for wall-to-wall coverage. Therefore, the main aim of this study was to investigate the use of UAS-lidar as a sampling tool for satellite-based AGB estimation in the Miombo woodlands of Zambia. In order to bridge the spatial data gap, this study employed a two-phase sampling approach, utilizing Sentinel-2 imagery, partial-coverage UAS-lidar data, and field plot data to estimate AGB in the 8094-hectare Miengwe Forest, Miombo Woodlands, Zambia, where UAS-lidar estimated AGB was used as reference data for estimating AGB using Sentinel-2 image metrics. The findings showed that utilizing UAS-lidar as reference data for predicting AGB using Sentinel-2 image metrics yielded superior results (Adj-R<sup>2</sup> = 0.70, RMSE = 27.97) than using direct field estimated AGB and Sentinel-2 image metrics (R<sup>2</sup> = 0.55, RMSE = 38.10). The quality of AGB estimates obtained from this approach, coupled with the ongoing advancement and cost-cutting of UAS-lidar technology as well as the continuous availability of wall-to-wall optical imagery such as Sentinel-2, provides much-needed direction for future forest structural attribute estimation for efficient management of the Miombo woodlands.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"88\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162019/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01212-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01212-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Exploring UAS-lidar as a sampling tool for satellite-based AGB estimations in the Miombo woodland of Zambia.
To date, only a limited number of studies have utilized remote sensing imagery to estimate aboveground biomass (AGB) in the Miombo ecoregion using wall-to-wall medium resolution optical satellite imagery (Sentinel-2 and Landsat), localized airborne light detection and ranging (lidar), or localized unmanned aerial systems (UAS) images. On the one hand, the optical satellite imagery is suitable for wall-to-wall coverage, but the AGB estimates based on such imagery lack precision for local or stand-level sustainable forest management and international reporting mechanisms. On the other hand, the AGB estimates based on airborne lidar and UAS imagery have the precision required for sustainable forest management at a local level and international reporting requirements but lack capacity for wall-to-wall coverage. Therefore, the main aim of this study was to investigate the use of UAS-lidar as a sampling tool for satellite-based AGB estimation in the Miombo woodlands of Zambia. In order to bridge the spatial data gap, this study employed a two-phase sampling approach, utilizing Sentinel-2 imagery, partial-coverage UAS-lidar data, and field plot data to estimate AGB in the 8094-hectare Miengwe Forest, Miombo Woodlands, Zambia, where UAS-lidar estimated AGB was used as reference data for estimating AGB using Sentinel-2 image metrics. The findings showed that utilizing UAS-lidar as reference data for predicting AGB using Sentinel-2 image metrics yielded superior results (Adj-R2 = 0.70, RMSE = 27.97) than using direct field estimated AGB and Sentinel-2 image metrics (R2 = 0.55, RMSE = 38.10). The quality of AGB estimates obtained from this approach, coupled with the ongoing advancement and cost-cutting of UAS-lidar technology as well as the continuous availability of wall-to-wall optical imagery such as Sentinel-2, provides much-needed direction for future forest structural attribute estimation for efficient management of the Miombo woodlands.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.