用于多种污染物控制的全球小型人工湿地的可持续性

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Guogui Chen, Yuanyuan Mo, Xuan Gu, Erik Jeppesen, Tian Xie, Zhonghua Ning, Yina Li, Dongxue Li, Cong Chen, Baoshan Cui, Haiming Wu
{"title":"用于多种污染物控制的全球小型人工湿地的可持续性","authors":"Guogui Chen, Yuanyuan Mo, Xuan Gu, Erik Jeppesen, Tian Xie, Zhonghua Ning, Yina Li, Dongxue Li, Cong Chen, Baoshan Cui, Haiming Wu","doi":"10.1038/s41545-024-00336-3","DOIUrl":null,"url":null,"abstract":"The global wastewater surge demands constructed wetlands (CWs) to achieve the UN’s Sustainable Development Goals (SDG); yet the pollutant removal interactions and global sustainability of small CWs are unclear. This study synthesizes small CW data from 364 sites worldwide. The removal efficiency of organic matter and nutrient pollutants of small CWs had a 75th percentile of 68.8–84.0%. Bivariate analysis found consistent synergies between pollutant removals, lasting 3–12 years. The optimal thresholds for maintaining the synergistic effects were as follows: area size—17587 m2, hydraulic loading rate—0.45 m/d, hydraulic retention time—8.2 days, and temperature—20.2 °C. When considering the co-benefits and sustainability of small CWs for multi-pollutants control, promoting small-scale CWs could be an effective and sustainable solution for managing diverse wastewater pollutants while simultaneously minimizing land requirements. This solution holds the potential to address the challenges posed by global water scarcity resulting from wastewater discharge and water pollution.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-13"},"PeriodicalIF":10.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00336-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Sustainability of global small-scale constructed wetlands for multiple pollutant control\",\"authors\":\"Guogui Chen, Yuanyuan Mo, Xuan Gu, Erik Jeppesen, Tian Xie, Zhonghua Ning, Yina Li, Dongxue Li, Cong Chen, Baoshan Cui, Haiming Wu\",\"doi\":\"10.1038/s41545-024-00336-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global wastewater surge demands constructed wetlands (CWs) to achieve the UN’s Sustainable Development Goals (SDG); yet the pollutant removal interactions and global sustainability of small CWs are unclear. This study synthesizes small CW data from 364 sites worldwide. The removal efficiency of organic matter and nutrient pollutants of small CWs had a 75th percentile of 68.8–84.0%. Bivariate analysis found consistent synergies between pollutant removals, lasting 3–12 years. The optimal thresholds for maintaining the synergistic effects were as follows: area size—17587 m2, hydraulic loading rate—0.45 m/d, hydraulic retention time—8.2 days, and temperature—20.2 °C. When considering the co-benefits and sustainability of small CWs for multi-pollutants control, promoting small-scale CWs could be an effective and sustainable solution for managing diverse wastewater pollutants while simultaneously minimizing land requirements. This solution holds the potential to address the challenges posed by global water scarcity resulting from wastewater discharge and water pollution.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-024-00336-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-024-00336-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00336-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

全球废水量激增,需要建造湿地(CW)来实现联合国可持续发展目标(SDG);然而,小型湿地的污染物去除相互作用和全球可持续性尚不明确。本研究综合了来自全球 364 个地点的小型 CW 数据。小型化武对有机物和营养物污染物的去除率为 68.8-84.0%,第 75 百分位数为 68.8-84.0%。双变量分析发现,污染物清除之间的协同作用持续了 3-12 年。维持协同效应的最佳阈值如下:面积-17587 平方米,水力负荷率-0.45 米/天,水力停留时间-8.2 天,温度-20.2 °C。考虑到小型化武处理对多种污染物控制的共同效益和可持续性,推广小型化武处理可成为一种有效且可持续的解决方案,在管理多种废水污染物的同时最大限度地减少对土地的需求。这种解决方案有可能解决废水排放和水污染造成的全球水资源短缺问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainability of global small-scale constructed wetlands for multiple pollutant control

Sustainability of global small-scale constructed wetlands for multiple pollutant control

Sustainability of global small-scale constructed wetlands for multiple pollutant control
The global wastewater surge demands constructed wetlands (CWs) to achieve the UN’s Sustainable Development Goals (SDG); yet the pollutant removal interactions and global sustainability of small CWs are unclear. This study synthesizes small CW data from 364 sites worldwide. The removal efficiency of organic matter and nutrient pollutants of small CWs had a 75th percentile of 68.8–84.0%. Bivariate analysis found consistent synergies between pollutant removals, lasting 3–12 years. The optimal thresholds for maintaining the synergistic effects were as follows: area size—17587 m2, hydraulic loading rate—0.45 m/d, hydraulic retention time—8.2 days, and temperature—20.2 °C. When considering the co-benefits and sustainability of small CWs for multi-pollutants control, promoting small-scale CWs could be an effective and sustainable solution for managing diverse wastewater pollutants while simultaneously minimizing land requirements. This solution holds the potential to address the challenges posed by global water scarcity resulting from wastewater discharge and water pollution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信