Alex Piccioni;Andrea Marotta;Claudia Rinaldi;Fabio Graziosi
{"title":"增强移动网络的城市空中交通连接性","authors":"Alex Piccioni;Andrea Marotta;Claudia Rinaldi;Fabio Graziosi","doi":"10.1109/LNET.2024.3390610","DOIUrl":null,"url":null,"abstract":"Aerial technologies represent a fundamental part of transport systems, and the overload of terrestrial transportation as well as the high demand in urban scenarios are forcing for new solutions. From this perspective, Urban Air Mobility (UAM) is emerging as an outperforming solution to guarantee high-speed vertical transportation taking advantage of low altitudes. Connectivity is a key factor for UAM vehicles, and mobile networks represent the best solution to provide immediate connectivity with high-performance and low expenses. This calls for the development of enhancement strategies for terrestrial radio access networks. This letter aims to investigate a strategy to provide connectivity for UAM vehicles while minimizing the number of base stations required to provide UAM connectivity. Insights on the impact of different design parameters on the number of enhanced BSs required to guarantee average and minimum throughput requirements for UAM users are provided.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 2","pages":"110-114"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504640","citationCount":"0","resultStr":"{\"title\":\"Enhancing Mobile Networks for Urban Air Mobility Connectivity\",\"authors\":\"Alex Piccioni;Andrea Marotta;Claudia Rinaldi;Fabio Graziosi\",\"doi\":\"10.1109/LNET.2024.3390610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerial technologies represent a fundamental part of transport systems, and the overload of terrestrial transportation as well as the high demand in urban scenarios are forcing for new solutions. From this perspective, Urban Air Mobility (UAM) is emerging as an outperforming solution to guarantee high-speed vertical transportation taking advantage of low altitudes. Connectivity is a key factor for UAM vehicles, and mobile networks represent the best solution to provide immediate connectivity with high-performance and low expenses. This calls for the development of enhancement strategies for terrestrial radio access networks. This letter aims to investigate a strategy to provide connectivity for UAM vehicles while minimizing the number of base stations required to provide UAM connectivity. Insights on the impact of different design parameters on the number of enhanced BSs required to guarantee average and minimum throughput requirements for UAM users are provided.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"6 2\",\"pages\":\"110-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504640\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10504640/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10504640/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Mobile Networks for Urban Air Mobility Connectivity
Aerial technologies represent a fundamental part of transport systems, and the overload of terrestrial transportation as well as the high demand in urban scenarios are forcing for new solutions. From this perspective, Urban Air Mobility (UAM) is emerging as an outperforming solution to guarantee high-speed vertical transportation taking advantage of low altitudes. Connectivity is a key factor for UAM vehicles, and mobile networks represent the best solution to provide immediate connectivity with high-performance and low expenses. This calls for the development of enhancement strategies for terrestrial radio access networks. This letter aims to investigate a strategy to provide connectivity for UAM vehicles while minimizing the number of base stations required to provide UAM connectivity. Insights on the impact of different design parameters on the number of enhanced BSs required to guarantee average and minimum throughput requirements for UAM users are provided.