改善流动填料床热交换器传热的双峰颗粒分布

Dallin Stout, Chase Christen, Todd P. Otanicar
{"title":"改善流动填料床热交换器传热的双峰颗粒分布","authors":"Dallin Stout,&nbsp;Chase Christen,&nbsp;Todd P. Otanicar","doi":"10.1016/j.nxener.2024.100142","DOIUrl":null,"url":null,"abstract":"<div><p>Recent studies have demonstrated that a mixture of two differently sized solid particles decreases mixture porosity while increasing thermal conductivity. This impact is limited up to temperatures of ∼400<!--> <!-->°C at which monodisperse distributions with larger particles yield higher thermal conductivities. In this work, a numerical model of the Gen3 Particle Pilot Plant (G3P3) 20<!--> <!-->kWt prototype heat exchanger constructed by Sandia National Laboratory (SNL) is validated for monodisperse particles distributions at its working temperatures (290–500<!--> <!-->°C) and both particle and sCO<sub>2</sub> (supercritical carbon dioxide) mass flow rates (100 g/s). The validated model is then used to simulate the performance of bimodal particle distributions at working G3P3 temperatures and predicts increases in the overall heat transfer coefficient of up to 25–40% with optimal bimodal particle mixtures when compared to monodispersed particle distributions of the respective mixtures’ large particles. At these optimal particle mixtures, the average particle wall convection coefficient contributes ∼35–45% of the specific thermal resistance while the particle near-wall contact resistance contributes ∼15–25%.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000474/pdfft?md5=01e77f9757c6c0db9d6a46dcc1b2ce97&pid=1-s2.0-S2949821X24000474-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bimodal particle distributions for improved heat transfer in flowing packed bed heat exchangers\",\"authors\":\"Dallin Stout,&nbsp;Chase Christen,&nbsp;Todd P. Otanicar\",\"doi\":\"10.1016/j.nxener.2024.100142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent studies have demonstrated that a mixture of two differently sized solid particles decreases mixture porosity while increasing thermal conductivity. This impact is limited up to temperatures of ∼400<!--> <!-->°C at which monodisperse distributions with larger particles yield higher thermal conductivities. In this work, a numerical model of the Gen3 Particle Pilot Plant (G3P3) 20<!--> <!-->kWt prototype heat exchanger constructed by Sandia National Laboratory (SNL) is validated for monodisperse particles distributions at its working temperatures (290–500<!--> <!-->°C) and both particle and sCO<sub>2</sub> (supercritical carbon dioxide) mass flow rates (100 g/s). The validated model is then used to simulate the performance of bimodal particle distributions at working G3P3 temperatures and predicts increases in the overall heat transfer coefficient of up to 25–40% with optimal bimodal particle mixtures when compared to monodispersed particle distributions of the respective mixtures’ large particles. At these optimal particle mixtures, the average particle wall convection coefficient contributes ∼35–45% of the specific thermal resistance while the particle near-wall contact resistance contributes ∼15–25%.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000474/pdfft?md5=01e77f9757c6c0db9d6a46dcc1b2ce97&pid=1-s2.0-S2949821X24000474-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,两种不同大小固体颗粒的混合物会降低混合物的孔隙率,同时增加导热性。这种影响仅限于 ∼400 °C 的温度,在此温度下,较大颗粒的单分散分布会产生较高的热导率。在这项工作中,对桑迪亚国家实验室(SNL)建造的Gen3 Particle Pilot Plant (G3P3) 20 kWt原型热交换器的数值模型进行了验证,以确定单分散颗粒分布在其工作温度(290-500 °C)以及颗粒和sCO2(超临界二氧化碳)质量流量(100 g/s)下的情况。经过验证的模型随后用于模拟双峰颗粒分布在 G3P3 工作温度下的性能,并预测与各自混合物大颗粒的单分散颗粒分布相比,最佳双峰颗粒混合物的整体传热系数最多可提高 25-40%。在这些最佳颗粒混合物中,平均颗粒壁对流系数占比热阻的 35% 至 45%,而颗粒近壁接触电阻占 15% 至 25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimodal particle distributions for improved heat transfer in flowing packed bed heat exchangers

Recent studies have demonstrated that a mixture of two differently sized solid particles decreases mixture porosity while increasing thermal conductivity. This impact is limited up to temperatures of ∼400 °C at which monodisperse distributions with larger particles yield higher thermal conductivities. In this work, a numerical model of the Gen3 Particle Pilot Plant (G3P3) 20 kWt prototype heat exchanger constructed by Sandia National Laboratory (SNL) is validated for monodisperse particles distributions at its working temperatures (290–500 °C) and both particle and sCO2 (supercritical carbon dioxide) mass flow rates (100 g/s). The validated model is then used to simulate the performance of bimodal particle distributions at working G3P3 temperatures and predicts increases in the overall heat transfer coefficient of up to 25–40% with optimal bimodal particle mixtures when compared to monodispersed particle distributions of the respective mixtures’ large particles. At these optimal particle mixtures, the average particle wall convection coefficient contributes ∼35–45% of the specific thermal resistance while the particle near-wall contact resistance contributes ∼15–25%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信