{"title":"采用石墨烯纳米复合材料的能源系统--下一个能源愿景","authors":"Ayesha Kausar , Ishaq Ahmad","doi":"10.1016/j.nxener.2024.100148","DOIUrl":null,"url":null,"abstract":"<div><p>This overview is designed to highpoint the existing field state of graphene and derived nanocomposites towards most demanding energy devices and systems. Recently, adopting efficient energy conversion and storage systems for technical practices have attained increasing research focus. Owing to unique structure, microstructure, and methodological features, graphene nanomaterials have been focused towards advanced systems like lithium ion batteries, supercapacitors, and fuel cells. Graphene nanocomposites have been recognized for high surface area, electron transference, charge capacity, specific capacitance, charge-discharge capabilities, cyclability, power conversion efficiency, fuel cell parameters, and competent features. In addition, specific features of graphene nanocomposites include exceptional microstructure and mechanical, thermal, and chemical reliability characteristics. In spite of indispensable characteristics of graphene nanocomposites, several processing and property challenges need to be resolved to achieve high-tech graphene nanocomposites towards advanced energy storage/conversion devices and systems.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"4 ","pages":"Article 100148"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X2400053X/pdfft?md5=9d5a71aa27412c7b67274dcc439a0ecb&pid=1-s2.0-S2949821X2400053X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Energy systems endorsing graphene nanocomposites—Next energy vision\",\"authors\":\"Ayesha Kausar , Ishaq Ahmad\",\"doi\":\"10.1016/j.nxener.2024.100148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This overview is designed to highpoint the existing field state of graphene and derived nanocomposites towards most demanding energy devices and systems. Recently, adopting efficient energy conversion and storage systems for technical practices have attained increasing research focus. Owing to unique structure, microstructure, and methodological features, graphene nanomaterials have been focused towards advanced systems like lithium ion batteries, supercapacitors, and fuel cells. Graphene nanocomposites have been recognized for high surface area, electron transference, charge capacity, specific capacitance, charge-discharge capabilities, cyclability, power conversion efficiency, fuel cell parameters, and competent features. In addition, specific features of graphene nanocomposites include exceptional microstructure and mechanical, thermal, and chemical reliability characteristics. In spite of indispensable characteristics of graphene nanocomposites, several processing and property challenges need to be resolved to achieve high-tech graphene nanocomposites towards advanced energy storage/conversion devices and systems.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"4 \",\"pages\":\"Article 100148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X2400053X/pdfft?md5=9d5a71aa27412c7b67274dcc439a0ecb&pid=1-s2.0-S2949821X2400053X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X2400053X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X2400053X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy systems endorsing graphene nanocomposites—Next energy vision
This overview is designed to highpoint the existing field state of graphene and derived nanocomposites towards most demanding energy devices and systems. Recently, adopting efficient energy conversion and storage systems for technical practices have attained increasing research focus. Owing to unique structure, microstructure, and methodological features, graphene nanomaterials have been focused towards advanced systems like lithium ion batteries, supercapacitors, and fuel cells. Graphene nanocomposites have been recognized for high surface area, electron transference, charge capacity, specific capacitance, charge-discharge capabilities, cyclability, power conversion efficiency, fuel cell parameters, and competent features. In addition, specific features of graphene nanocomposites include exceptional microstructure and mechanical, thermal, and chemical reliability characteristics. In spite of indispensable characteristics of graphene nanocomposites, several processing and property challenges need to be resolved to achieve high-tech graphene nanocomposites towards advanced energy storage/conversion devices and systems.