{"title":"通过电凝-煤基粉末活性炭工艺处理渗滤液:效率、机制、动力学和成本。","authors":"Aysenur Ogedey, Ensar Oguz","doi":"10.1002/wer.11060","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to improve COD, NH<sub>3</sub>-N, and turbidity removal from Bingöl's leachate using a single-reactor integrated electrocoagulation (EC)-coal-based powdered activated carbon (CBPAC) process under various experimental conditions. In the EC-CBPAC process, three stainless-steel cathodes and three aluminum electrodes were connected to the negative and positive terminals of the power supply, respectively. The initial concentrations in the leachate were 1044 mg O<sub>2</sub>/L for COD, 204 mg/L for NH<sub>3</sub>-N, and 57 NTU (or 71.25-mg (NH<sub>2</sub>)2H<sub>2</sub>SO<sub>4</sub>/L) for turbidity, respectively. After a 40-min EC-CBPAC process, with a CBPAC dosage of 5 g/L and pH of 5 for COD and turbidity, and 9.5 for NH<sub>3</sub>-N, the optimum removal efficiencies for COD, NH<sub>3</sub>-N, and turbidity were achieved at 92%, 40%, and 91%, respectively. When the EC process was applied without CBPAC under the same experimental conditions, the removal efficiencies of COD, NH<sub>3</sub>-N, and turbidity were 87%, 28%, and 54%, respectively. Before and after the EC-CBPAC process, the Brunauer-Emmett-Teller (BET) surface area, pore volume, and mean pore diameter of the CBPAC were found to be (888 m<sup>2</sup>/g, 0.498 cm<sup>3</sup>/g, and 22.28 Å) and (173 m<sup>2</sup>/g, 0.18 cm<sup>3</sup>/g, and 42.8 Å), respectively. The optimum pseudo-first-order (PFO) rate constants for COD, turbidity, and NH<sub>3</sub>-N were determined to be 3.15 × 10<sup>-2</sup>, 4.77 × 10<sup>-2</sup>, and 8.8 × 10<sup>-3</sup> min<sup>-1</sup>, respectively. With the current density increasing from 15 to 25 mA/cm<sup>2</sup>, energy consumption, unit energy consumption, and total cost increased from 68.7 to 122.4 kWh/m<sup>3</sup>, 6.948 to 15.226 kWh/kg COD, and 0.85 to 1.838 $/kg COD, respectively. PRACTITIONER POINTS: EC-CBPAC process has greater COD, NH<sub>3</sub>-N, and turbidity removal efficiency than EC process. COD and turbidity achieved their optimum disposal efficiencies at 92% and 91%, respectively, at pH 5 The most efficient disposal efficiency for NH<sub>3</sub>-N was observed to be 40% at pH 9.5. EC-CBPAC process increased removal efficiencies for COD, NH<sub>3</sub>-N, and turbidity by 20%, 19%, and 38%, respectively, compared with EC alone. The turbidity, NH<sub>3</sub>-N, and COD disposal fitted PSO model due to high correlation values (R<sup>2</sup> 0.94-0.99).</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 6","pages":"e11060"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leachate treatment via electrocoagulation-coal-based powdered activated carbon process: Efficiencies, mechanisms, kinetics, and costs.\",\"authors\":\"Aysenur Ogedey, Ensar Oguz\",\"doi\":\"10.1002/wer.11060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to improve COD, NH<sub>3</sub>-N, and turbidity removal from Bingöl's leachate using a single-reactor integrated electrocoagulation (EC)-coal-based powdered activated carbon (CBPAC) process under various experimental conditions. In the EC-CBPAC process, three stainless-steel cathodes and three aluminum electrodes were connected to the negative and positive terminals of the power supply, respectively. The initial concentrations in the leachate were 1044 mg O<sub>2</sub>/L for COD, 204 mg/L for NH<sub>3</sub>-N, and 57 NTU (or 71.25-mg (NH<sub>2</sub>)2H<sub>2</sub>SO<sub>4</sub>/L) for turbidity, respectively. After a 40-min EC-CBPAC process, with a CBPAC dosage of 5 g/L and pH of 5 for COD and turbidity, and 9.5 for NH<sub>3</sub>-N, the optimum removal efficiencies for COD, NH<sub>3</sub>-N, and turbidity were achieved at 92%, 40%, and 91%, respectively. When the EC process was applied without CBPAC under the same experimental conditions, the removal efficiencies of COD, NH<sub>3</sub>-N, and turbidity were 87%, 28%, and 54%, respectively. Before and after the EC-CBPAC process, the Brunauer-Emmett-Teller (BET) surface area, pore volume, and mean pore diameter of the CBPAC were found to be (888 m<sup>2</sup>/g, 0.498 cm<sup>3</sup>/g, and 22.28 Å) and (173 m<sup>2</sup>/g, 0.18 cm<sup>3</sup>/g, and 42.8 Å), respectively. The optimum pseudo-first-order (PFO) rate constants for COD, turbidity, and NH<sub>3</sub>-N were determined to be 3.15 × 10<sup>-2</sup>, 4.77 × 10<sup>-2</sup>, and 8.8 × 10<sup>-3</sup> min<sup>-1</sup>, respectively. With the current density increasing from 15 to 25 mA/cm<sup>2</sup>, energy consumption, unit energy consumption, and total cost increased from 68.7 to 122.4 kWh/m<sup>3</sup>, 6.948 to 15.226 kWh/kg COD, and 0.85 to 1.838 $/kg COD, respectively. PRACTITIONER POINTS: EC-CBPAC process has greater COD, NH<sub>3</sub>-N, and turbidity removal efficiency than EC process. COD and turbidity achieved their optimum disposal efficiencies at 92% and 91%, respectively, at pH 5 The most efficient disposal efficiency for NH<sub>3</sub>-N was observed to be 40% at pH 9.5. EC-CBPAC process increased removal efficiencies for COD, NH<sub>3</sub>-N, and turbidity by 20%, 19%, and 38%, respectively, compared with EC alone. The turbidity, NH<sub>3</sub>-N, and COD disposal fitted PSO model due to high correlation values (R<sup>2</sup> 0.94-0.99).</p>\",\"PeriodicalId\":23621,\"journal\":{\"name\":\"Water Environment Research\",\"volume\":\"96 6\",\"pages\":\"e11060\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/wer.11060\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11060","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Leachate treatment via electrocoagulation-coal-based powdered activated carbon process: Efficiencies, mechanisms, kinetics, and costs.
This study aims to improve COD, NH3-N, and turbidity removal from Bingöl's leachate using a single-reactor integrated electrocoagulation (EC)-coal-based powdered activated carbon (CBPAC) process under various experimental conditions. In the EC-CBPAC process, three stainless-steel cathodes and three aluminum electrodes were connected to the negative and positive terminals of the power supply, respectively. The initial concentrations in the leachate were 1044 mg O2/L for COD, 204 mg/L for NH3-N, and 57 NTU (or 71.25-mg (NH2)2H2SO4/L) for turbidity, respectively. After a 40-min EC-CBPAC process, with a CBPAC dosage of 5 g/L and pH of 5 for COD and turbidity, and 9.5 for NH3-N, the optimum removal efficiencies for COD, NH3-N, and turbidity were achieved at 92%, 40%, and 91%, respectively. When the EC process was applied without CBPAC under the same experimental conditions, the removal efficiencies of COD, NH3-N, and turbidity were 87%, 28%, and 54%, respectively. Before and after the EC-CBPAC process, the Brunauer-Emmett-Teller (BET) surface area, pore volume, and mean pore diameter of the CBPAC were found to be (888 m2/g, 0.498 cm3/g, and 22.28 Å) and (173 m2/g, 0.18 cm3/g, and 42.8 Å), respectively. The optimum pseudo-first-order (PFO) rate constants for COD, turbidity, and NH3-N were determined to be 3.15 × 10-2, 4.77 × 10-2, and 8.8 × 10-3 min-1, respectively. With the current density increasing from 15 to 25 mA/cm2, energy consumption, unit energy consumption, and total cost increased from 68.7 to 122.4 kWh/m3, 6.948 to 15.226 kWh/kg COD, and 0.85 to 1.838 $/kg COD, respectively. PRACTITIONER POINTS: EC-CBPAC process has greater COD, NH3-N, and turbidity removal efficiency than EC process. COD and turbidity achieved their optimum disposal efficiencies at 92% and 91%, respectively, at pH 5 The most efficient disposal efficiency for NH3-N was observed to be 40% at pH 9.5. EC-CBPAC process increased removal efficiencies for COD, NH3-N, and turbidity by 20%, 19%, and 38%, respectively, compared with EC alone. The turbidity, NH3-N, and COD disposal fitted PSO model due to high correlation values (R2 0.94-0.99).
期刊介绍:
Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.