Chiara Veneroni, Alessandro Gobbi, Pasquale Pio Pompilio, Raffaele Dellacà, Salvatore Fasola, Stefania La Grutta, Agustin Leyva, Janos Porszasz, Silvia Romana Stornelli, Leonello Fuso, Christoph Valach, Robab Breyer-Kohansal, Marie-Kathrin Breyer, Sylvia Hartl, Chiara Contu, Riccardo Inchingolo, Kevin Hodgdon, David A Kaminsky
{"title":"白人成年人呼气内呼吸振荡测量参考方程。","authors":"Chiara Veneroni, Alessandro Gobbi, Pasquale Pio Pompilio, Raffaele Dellacà, Salvatore Fasola, Stefania La Grutta, Agustin Leyva, Janos Porszasz, Silvia Romana Stornelli, Leonello Fuso, Christoph Valach, Robab Breyer-Kohansal, Marie-Kathrin Breyer, Sylvia Hartl, Chiara Contu, Riccardo Inchingolo, Kevin Hodgdon, David A Kaminsky","doi":"10.1159/000539532","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Within-breath analysis of oscillometry parameters is a growing research area since it increases sensitivity and specificity to respiratory pathologies and conditions. However, reference equations for these parameters in White adults are lacking and devices using multiple sinusoids or pseudorandom forcing stimuli have been underrepresented in previous studies deriving reference equations. The current study aimed to establish reference ranges for oscillometry parameters, including also the within-breath ones in White adults using multi-sinusoidal oscillations.</p><p><strong>Methods: </strong>White adults with normal spirometry, BMI ≤30 kg/m2, without a smoking history, respiratory symptoms, pulmonary or cardiac disease, neurological or neuromuscular disorders, and respiratory tract infections in the previous 4 weeks were eligible for the study. Study subjects underwent oscillometry (multifrequency waveform at 5-11-19 Hz, Resmon PRO FULL, RESTECH Srl, Italy) in 5 centers in Europe and the USA according to international standards. The within-breath and total resistance (R) and reactance (X), the resonance frequency, the area under the X curve, the frequency dependence of R (R5-19), and within-breath changes of X (ΔX) were submitted to lambda-mu-sigma models for deriving reference equations. For each output parameter, an AIC-based stepwise input variable selection procedure was applied.</p><p><strong>Results: </strong>A total of 144 subjects (age 20.8-86.3 years; height 146-193 cm; BMI 17.42-29.98 kg/m2; 56% females) were included. We derived reference equations for 29 oscillatory parameters. Predicted values for inspiratory and expiratory parameters were similar, while differences were observed for their limits of normality.</p><p><strong>Conclusions: </strong>We derived reference equations with narrow confidence intervals for within-breath and whole-breath oscillatory parameters for White adults.</p>","PeriodicalId":21048,"journal":{"name":"Respiration","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reference Equations for Within-Breath Respiratory Oscillometry in White Adults.\",\"authors\":\"Chiara Veneroni, Alessandro Gobbi, Pasquale Pio Pompilio, Raffaele Dellacà, Salvatore Fasola, Stefania La Grutta, Agustin Leyva, Janos Porszasz, Silvia Romana Stornelli, Leonello Fuso, Christoph Valach, Robab Breyer-Kohansal, Marie-Kathrin Breyer, Sylvia Hartl, Chiara Contu, Riccardo Inchingolo, Kevin Hodgdon, David A Kaminsky\",\"doi\":\"10.1159/000539532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Within-breath analysis of oscillometry parameters is a growing research area since it increases sensitivity and specificity to respiratory pathologies and conditions. However, reference equations for these parameters in White adults are lacking and devices using multiple sinusoids or pseudorandom forcing stimuli have been underrepresented in previous studies deriving reference equations. The current study aimed to establish reference ranges for oscillometry parameters, including also the within-breath ones in White adults using multi-sinusoidal oscillations.</p><p><strong>Methods: </strong>White adults with normal spirometry, BMI ≤30 kg/m2, without a smoking history, respiratory symptoms, pulmonary or cardiac disease, neurological or neuromuscular disorders, and respiratory tract infections in the previous 4 weeks were eligible for the study. Study subjects underwent oscillometry (multifrequency waveform at 5-11-19 Hz, Resmon PRO FULL, RESTECH Srl, Italy) in 5 centers in Europe and the USA according to international standards. The within-breath and total resistance (R) and reactance (X), the resonance frequency, the area under the X curve, the frequency dependence of R (R5-19), and within-breath changes of X (ΔX) were submitted to lambda-mu-sigma models for deriving reference equations. For each output parameter, an AIC-based stepwise input variable selection procedure was applied.</p><p><strong>Results: </strong>A total of 144 subjects (age 20.8-86.3 years; height 146-193 cm; BMI 17.42-29.98 kg/m2; 56% females) were included. We derived reference equations for 29 oscillatory parameters. Predicted values for inspiratory and expiratory parameters were similar, while differences were observed for their limits of normality.</p><p><strong>Conclusions: </strong>We derived reference equations with narrow confidence intervals for within-breath and whole-breath oscillatory parameters for White adults.</p>\",\"PeriodicalId\":21048,\"journal\":{\"name\":\"Respiration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000539532\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539532","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Reference Equations for Within-Breath Respiratory Oscillometry in White Adults.
Background: Within-breath analysis of oscillometry parameters is a growing research area since it increases sensitivity and specificity to respiratory pathologies and conditions. However, reference equations for these parameters in White adults are lacking and devices using multiple sinusoids or pseudorandom forcing stimuli have been underrepresented in previous studies deriving reference equations. The current study aimed to establish reference ranges for oscillometry parameters, including also the within-breath ones in White adults using multi-sinusoidal oscillations.
Methods: White adults with normal spirometry, BMI ≤30 kg/m2, without a smoking history, respiratory symptoms, pulmonary or cardiac disease, neurological or neuromuscular disorders, and respiratory tract infections in the previous 4 weeks were eligible for the study. Study subjects underwent oscillometry (multifrequency waveform at 5-11-19 Hz, Resmon PRO FULL, RESTECH Srl, Italy) in 5 centers in Europe and the USA according to international standards. The within-breath and total resistance (R) and reactance (X), the resonance frequency, the area under the X curve, the frequency dependence of R (R5-19), and within-breath changes of X (ΔX) were submitted to lambda-mu-sigma models for deriving reference equations. For each output parameter, an AIC-based stepwise input variable selection procedure was applied.
Results: A total of 144 subjects (age 20.8-86.3 years; height 146-193 cm; BMI 17.42-29.98 kg/m2; 56% females) were included. We derived reference equations for 29 oscillatory parameters. Predicted values for inspiratory and expiratory parameters were similar, while differences were observed for their limits of normality.
Conclusions: We derived reference equations with narrow confidence intervals for within-breath and whole-breath oscillatory parameters for White adults.
期刊介绍:
''Respiration'' brings together the results of both clinical and experimental investigations on all aspects of the respiratory system in health and disease. Clinical improvements in the diagnosis and treatment of chest and lung diseases are covered, as are the latest findings in physiology, biochemistry, pathology, immunology and pharmacology. The journal includes classic features such as editorials that accompany original articles in clinical and basic science research, reviews and letters to the editor. Further sections are: Technical Notes, The Eye Catcher, What’s Your Diagnosis?, The Opinion Corner, New Drugs in Respiratory Medicine, New Insights from Clinical Practice and Guidelines. ''Respiration'' is the official journal of the Swiss Society for Pneumology (SGP) and also home to the European Association for Bronchology and Interventional Pulmonology (EABIP), which occupies a dedicated section on Interventional Pulmonology in the journal. This modern mix of different features and a stringent peer-review process by a dedicated editorial board make ''Respiration'' a complete guide to progress in thoracic medicine.