利用基于模型的共轭方法生成逼真的虚拟成人种群。

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Yuchen Guo, Tingjie Guo, Catherijne A J Knibbe, Laura B Zwep, J G Coen van Hasselt
{"title":"利用基于模型的共轭方法生成逼真的虚拟成人种群。","authors":"Yuchen Guo, Tingjie Guo, Catherijne A J Knibbe, Laura B Zwep, J G Coen van Hasselt","doi":"10.1007/s10928-024-09929-4","DOIUrl":null,"url":null,"abstract":"<p><p>Incorporating realistic sets of patient-associated covariates, i.e., virtual populations, in pharmacometric simulation workflows is essential to obtain realistic model predictions. Current covariate simulation strategies often omit or simplify dependency structures between covariates. Copula models are multivariate distribution functions suitable to capture dependency structures between covariates with improved performance compared to standard approaches. We aimed to develop and evaluate a copula model for generation of adult virtual populations for 12 patient-associated covariates commonly used in pharmacometric simulations, using the publicly available NHANES database, including sex, race-ethnicity, body weight, albumin, and several biochemical variables related to organ function. A multivariate (vine) copula was constructed from bivariate relationships in a stepwise fashion. Covariate distributions were well captured for the overall and subgroup populations. Based on the developed copula model, a web application was developed. The developed copula model and associated web application can be used to generate realistic adult virtual populations, ultimately to support model-based clinical trial design or dose optimization strategies.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"735-746"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579194/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generation of realistic virtual adult populations using a model-based copula approach.\",\"authors\":\"Yuchen Guo, Tingjie Guo, Catherijne A J Knibbe, Laura B Zwep, J G Coen van Hasselt\",\"doi\":\"10.1007/s10928-024-09929-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Incorporating realistic sets of patient-associated covariates, i.e., virtual populations, in pharmacometric simulation workflows is essential to obtain realistic model predictions. Current covariate simulation strategies often omit or simplify dependency structures between covariates. Copula models are multivariate distribution functions suitable to capture dependency structures between covariates with improved performance compared to standard approaches. We aimed to develop and evaluate a copula model for generation of adult virtual populations for 12 patient-associated covariates commonly used in pharmacometric simulations, using the publicly available NHANES database, including sex, race-ethnicity, body weight, albumin, and several biochemical variables related to organ function. A multivariate (vine) copula was constructed from bivariate relationships in a stepwise fashion. Covariate distributions were well captured for the overall and subgroup populations. Based on the developed copula model, a web application was developed. The developed copula model and associated web application can be used to generate realistic adult virtual populations, ultimately to support model-based clinical trial design or dose optimization strategies.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\" \",\"pages\":\"735-746\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579194/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-024-09929-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09929-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在药物计量学模拟工作流程中纳入现实的患者相关协变量集,即虚拟人群,对于获得逼真的模型预测至关重要。目前的协变量模拟策略通常会忽略或简化协变量之间的依赖结构。Copula 模型是一种多变量分布函数,适用于捕捉协变量之间的依赖结构,与标准方法相比性能更高。我们的目的是利用公开的 NHANES 数据库,包括性别、种族、体重、白蛋白和几个与器官功能相关的生化变量,开发并评估一个 copula 模型,用于生成药效学模拟中常用的 12 个患者相关协变量的成人虚拟人群。根据双变量关系逐步构建了多变量(藤蔓)协方差。总体和亚组人群的相关变量分布得到了很好的捕捉。根据所建立的协方差模型,开发了一个网络应用程序。所开发的 copula 模型和相关的网络应用程序可用于生成真实的成人虚拟人群,最终支持基于模型的临床试验设计或剂量优化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generation of realistic virtual adult populations using a model-based copula approach.

Generation of realistic virtual adult populations using a model-based copula approach.

Incorporating realistic sets of patient-associated covariates, i.e., virtual populations, in pharmacometric simulation workflows is essential to obtain realistic model predictions. Current covariate simulation strategies often omit or simplify dependency structures between covariates. Copula models are multivariate distribution functions suitable to capture dependency structures between covariates with improved performance compared to standard approaches. We aimed to develop and evaluate a copula model for generation of adult virtual populations for 12 patient-associated covariates commonly used in pharmacometric simulations, using the publicly available NHANES database, including sex, race-ethnicity, body weight, albumin, and several biochemical variables related to organ function. A multivariate (vine) copula was constructed from bivariate relationships in a stepwise fashion. Covariate distributions were well captured for the overall and subgroup populations. Based on the developed copula model, a web application was developed. The developed copula model and associated web application can be used to generate realistic adult virtual populations, ultimately to support model-based clinical trial design or dose optimization strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信