Akira J. T. Alexander, Rhys H. Parry, Maxime Ratinier, Frédérick Arnaud, Alain Kohl
{"title":"RNA 干扰对 Phlebotomus papatasi 沙蝇细胞中阿尔汉诺达病毒复制的反应。","authors":"Akira J. T. Alexander, Rhys H. Parry, Maxime Ratinier, Frédérick Arnaud, Alain Kohl","doi":"10.1111/imb.12932","DOIUrl":null,"url":null,"abstract":"<p>In this study, we identified and assembled a strain of American nodavirus (ANV) in the <i>Phlebotomus papatasi</i>-derived PP9ad cell line. This strain most closely resembles Flock House virus and ANV identified in the <i>Drosophila melanogaster</i> S2/S2R cell line. Through small RNA sequencing and analysis, we demonstrate that ANV replication in PP9ad cells is primarily targeted by the exogenous small interfering RNA (exo-siRNA) pathway, with minimal engagement from the PIWI-interacting RNA (piRNA) pathway. In mosquitoes such as <i>Aedes</i> and <i>Culex</i>, the PIWI pathway is expanded and specialised, which actively limits virus replication. This is unlike in <i>Drosophila</i> spp., where the piRNA pathway does not restrict viral replication. In <i>Lutzomyia</i> sandflies (family <i>Psychodidae</i>), close relatives of <i>Phlebotomus</i> species and <i>Drosophila</i>, there appears to be an absence of virus-derived piRNAs. To investigate whether this absence is due to a lack of PIWI pathway proteins, we analysed the piRNA and siRNA diversity and repertoire in PP9ad cells. Previous assemblies of <i>P. papatasi</i> genome (Ppap_1.0) have revealed a patchy repertoire of the siRNA and piRNA pathways. Our analysis of the updated <i>P. papatasi</i> genome (Ppap_2.1) has shown no PIWI protein expansion in sandflies. We found that both siRNA and piRNA pathways are transcriptionally active in PP9ad cells, with genomic mapping of small RNAs generating typical piRNA signatures. Our results suggest that the piRNA pathway may not respond to virus replication in these cells, but an antiviral response is mounted via the exo-siRNA pathway.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"687-696"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12932","citationCount":"0","resultStr":"{\"title\":\"The RNA interference response to alphanodavirus replication in Phlebotomus papatasi sand fly cells\",\"authors\":\"Akira J. T. Alexander, Rhys H. Parry, Maxime Ratinier, Frédérick Arnaud, Alain Kohl\",\"doi\":\"10.1111/imb.12932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we identified and assembled a strain of American nodavirus (ANV) in the <i>Phlebotomus papatasi</i>-derived PP9ad cell line. This strain most closely resembles Flock House virus and ANV identified in the <i>Drosophila melanogaster</i> S2/S2R cell line. Through small RNA sequencing and analysis, we demonstrate that ANV replication in PP9ad cells is primarily targeted by the exogenous small interfering RNA (exo-siRNA) pathway, with minimal engagement from the PIWI-interacting RNA (piRNA) pathway. In mosquitoes such as <i>Aedes</i> and <i>Culex</i>, the PIWI pathway is expanded and specialised, which actively limits virus replication. This is unlike in <i>Drosophila</i> spp., where the piRNA pathway does not restrict viral replication. In <i>Lutzomyia</i> sandflies (family <i>Psychodidae</i>), close relatives of <i>Phlebotomus</i> species and <i>Drosophila</i>, there appears to be an absence of virus-derived piRNAs. To investigate whether this absence is due to a lack of PIWI pathway proteins, we analysed the piRNA and siRNA diversity and repertoire in PP9ad cells. Previous assemblies of <i>P. papatasi</i> genome (Ppap_1.0) have revealed a patchy repertoire of the siRNA and piRNA pathways. Our analysis of the updated <i>P. papatasi</i> genome (Ppap_2.1) has shown no PIWI protein expansion in sandflies. We found that both siRNA and piRNA pathways are transcriptionally active in PP9ad cells, with genomic mapping of small RNAs generating typical piRNA signatures. Our results suggest that the piRNA pathway may not respond to virus replication in these cells, but an antiviral response is mounted via the exo-siRNA pathway.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":\"33 6\",\"pages\":\"687-696\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12932\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imb.12932\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12932","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The RNA interference response to alphanodavirus replication in Phlebotomus papatasi sand fly cells
In this study, we identified and assembled a strain of American nodavirus (ANV) in the Phlebotomus papatasi-derived PP9ad cell line. This strain most closely resembles Flock House virus and ANV identified in the Drosophila melanogaster S2/S2R cell line. Through small RNA sequencing and analysis, we demonstrate that ANV replication in PP9ad cells is primarily targeted by the exogenous small interfering RNA (exo-siRNA) pathway, with minimal engagement from the PIWI-interacting RNA (piRNA) pathway. In mosquitoes such as Aedes and Culex, the PIWI pathway is expanded and specialised, which actively limits virus replication. This is unlike in Drosophila spp., where the piRNA pathway does not restrict viral replication. In Lutzomyia sandflies (family Psychodidae), close relatives of Phlebotomus species and Drosophila, there appears to be an absence of virus-derived piRNAs. To investigate whether this absence is due to a lack of PIWI pathway proteins, we analysed the piRNA and siRNA diversity and repertoire in PP9ad cells. Previous assemblies of P. papatasi genome (Ppap_1.0) have revealed a patchy repertoire of the siRNA and piRNA pathways. Our analysis of the updated P. papatasi genome (Ppap_2.1) has shown no PIWI protein expansion in sandflies. We found that both siRNA and piRNA pathways are transcriptionally active in PP9ad cells, with genomic mapping of small RNAs generating typical piRNA signatures. Our results suggest that the piRNA pathway may not respond to virus replication in these cells, but an antiviral response is mounted via the exo-siRNA pathway.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).