Teresa Carolliny Moreira Lustoza Rodrigues, Arthur Lins Dias, Aline Matilde Ferreira Dos Santos, Alex France Messias Monteiro, Mayara Cecile Nascimento Oliveira, Hugo Fernandes Oliveira Pires, Natália Ferreira de Sousa, Mirian Graciela da Silva Stiebbe Salvadori, Marcus Tullius Scotti, Luciana Scotti
{"title":"多靶点苯丙酮类抗癫痫药。","authors":"Teresa Carolliny Moreira Lustoza Rodrigues, Arthur Lins Dias, Aline Matilde Ferreira Dos Santos, Alex France Messias Monteiro, Mayara Cecile Nascimento Oliveira, Hugo Fernandes Oliveira Pires, Natália Ferreira de Sousa, Mirian Graciela da Silva Stiebbe Salvadori, Marcus Tullius Scotti, Luciana Scotti","doi":"10.2174/1570159X22666240524160126","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is a neurological disease with no defined cause, characterized by recurrent epileptic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phenylpropanoid compounds to predict biological activities. The LBVS were developed for the targets alpha- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel Ttype (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 compound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and significant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epilepsy.</p>","PeriodicalId":10905,"journal":{"name":"Current Neuropharmacology","volume":"22 13","pages":"2168-2190"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337686/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-target Phenylpropanoids Against Epilepsy.\",\"authors\":\"Teresa Carolliny Moreira Lustoza Rodrigues, Arthur Lins Dias, Aline Matilde Ferreira Dos Santos, Alex France Messias Monteiro, Mayara Cecile Nascimento Oliveira, Hugo Fernandes Oliveira Pires, Natália Ferreira de Sousa, Mirian Graciela da Silva Stiebbe Salvadori, Marcus Tullius Scotti, Luciana Scotti\",\"doi\":\"10.2174/1570159X22666240524160126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epilepsy is a neurological disease with no defined cause, characterized by recurrent epileptic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phenylpropanoid compounds to predict biological activities. The LBVS were developed for the targets alpha- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel Ttype (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 compound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and significant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epilepsy.</p>\",\"PeriodicalId\":10905,\"journal\":{\"name\":\"Current Neuropharmacology\",\"volume\":\"22 13\",\"pages\":\"2168-2190\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337686/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1570159X22666240524160126\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1570159X22666240524160126","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Epilepsy is a neurological disease with no defined cause, characterized by recurrent epileptic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phenylpropanoid compounds to predict biological activities. The LBVS were developed for the targets alpha- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel Ttype (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 compound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and significant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epilepsy.
期刊介绍:
Current Neuropharmacology aims to provide current, comprehensive/mini reviews and guest edited issues of all areas of neuropharmacology and related matters of neuroscience. The reviews cover the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience.
The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.