论伸长核糖体对转运反作用力的反应

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Biophysical journal Pub Date : 2024-09-17 Epub Date: 2024-06-06 DOI:10.1016/j.bpj.2024.05.032
Peter B Moore
{"title":"论伸长核糖体对转运反作用力的反应","authors":"Peter B Moore","doi":"10.1016/j.bpj.2024.05.032","DOIUrl":null,"url":null,"abstract":"<p><p>The elongation phase of protein synthesis is a cyclic, steady-state process. It follows that its directionality is determined by the thermodynamics of the accompanying chemical reactions, which strongly favor elongation. Its irreversibility is guaranteed by its coupling to those reactions, rather being a consequence of any of the conformational changes that occur as it unfolds. It also follows that, in general, the rate of elongation is not proportional to the forward rate constants of any of its steps, including its final, mechano-chemical step, translocation. Instead, the reciprocal of the rate of elongation should be linearly related to the reciprocal of those rate constants. When the results of experiments done a decade ago to measure the effect that forces opposing translocation have on the rate of elongation are reinterpreted in light of these findings, it becomes clear that translocation was rate limiting under conditions in which those experiments were done, and that it is likely to be a Brownian ratchet process, as was concluded earlier.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427781/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the response of elongating ribosomes to forces opposing translocation.\",\"authors\":\"Peter B Moore\",\"doi\":\"10.1016/j.bpj.2024.05.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The elongation phase of protein synthesis is a cyclic, steady-state process. It follows that its directionality is determined by the thermodynamics of the accompanying chemical reactions, which strongly favor elongation. Its irreversibility is guaranteed by its coupling to those reactions, rather being a consequence of any of the conformational changes that occur as it unfolds. It also follows that, in general, the rate of elongation is not proportional to the forward rate constants of any of its steps, including its final, mechano-chemical step, translocation. Instead, the reciprocal of the rate of elongation should be linearly related to the reciprocal of those rate constants. When the results of experiments done a decade ago to measure the effect that forces opposing translocation have on the rate of elongation are reinterpreted in light of these findings, it becomes clear that translocation was rate limiting under conditions in which those experiments were done, and that it is likely to be a Brownian ratchet process, as was concluded earlier.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427781/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.05.032\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.05.032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质合成的伸长阶段是一个周期性的稳态过程。因此,其方向性是由伴随的化学反应的热力学决定的,这些反应非常有利于伸长。其不可逆性是由其与这些反应的耦合性所保证的,而不是在其展开过程中发生的任何构象变化的结果。由此也可以看出,一般来说,伸长速率与任何步骤的正向速率常数都不成正比,包括最后的机械化学步骤--转位。相反,伸长速率的倒数应该与这些速率常数的倒数成线性关系。如果根据这些发现重新解释十年前为测量反对转位的力量对伸长率的影响而进行的实验结果,就会发现在当时的实验条件下,转位是限制伸长率的,而且很可能是一个布朗棘轮过程,正如早些时候得出的结论一样(Liu 等,2014 年,eLIFE 3,e03406)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the response of elongating ribosomes to forces opposing translocation.

The elongation phase of protein synthesis is a cyclic, steady-state process. It follows that its directionality is determined by the thermodynamics of the accompanying chemical reactions, which strongly favor elongation. Its irreversibility is guaranteed by its coupling to those reactions, rather being a consequence of any of the conformational changes that occur as it unfolds. It also follows that, in general, the rate of elongation is not proportional to the forward rate constants of any of its steps, including its final, mechano-chemical step, translocation. Instead, the reciprocal of the rate of elongation should be linearly related to the reciprocal of those rate constants. When the results of experiments done a decade ago to measure the effect that forces opposing translocation have on the rate of elongation are reinterpreted in light of these findings, it becomes clear that translocation was rate limiting under conditions in which those experiments were done, and that it is likely to be a Brownian ratchet process, as was concluded earlier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信